

Kennecott Utah Copper | Environmental Restoration Group

South Facilities Groundwater 2009 Remedial Progress Report

April 2010

Contents

1.		Introduction	1-1
2.		Remedial Operations	2-
	2.1	Groundwater Remediation System	
	2.2	Extraction and Treatment	
3.		Compliance with Performance Standards and Monitoring Requirem	
	3.1	Performance Standards	
	3.2	Extraction Rate	3-1
	3.3	Required Monitoring	3-1
	3.4	Plume Containment	
4.		Remedial Progress	4-1
	4.1	Sulfate	4-1
		1.1 Plume Interior	4-2
	4.	1.2 KUC Deep Well Field	4-4
		1.3 Southeast Margin	4-6
		1.4 West Jordan Well Field	
	4.2	Aluminum	4-7
	4.3	Arsenic, Cadmium, and Copper	
	4.4	pH	4-9
		4.1 Plume Core	4-9
_	4.4	4.2 Leading Edge of Plume	4-10
5.		Groundwater Elevation	5-1
	5.1	Groundwater Gradients	5-1
	5.2	One-Year Water-Level Elevation Changes	5-2
6.	5.3	Water Level Changes from 1996 to 2009	5-4
		Subsidence	0-1
7.	7.1	Tailings Chemistry Flow and Tailings pH	7-1
	7.1 7.2	Tailings Chamistry	7-1
	7.2 7.3	Tailings Chemistry UPDES Permit Compliance	7-1
	7·4	Tailings Neutralization Potential	/-2
8.	/•4	References	/-2 R ₋₁
0.		References	
Т	able		
1	able		
2-1	l Annı	ual Zone A Groundwater Extraction 2005-2009 (ac-ft)	2-1
2-2	2 Ann	nual RO Plant Feed Water Volumes (ac-ft)	2-2
		e-year average extraction from the acid plume (acre-feet)	
3-2	2 Con	npliance Well Sampling Frequency and Timing	3-2
3-3	3 Con	npliance and Extraction Well Monitoring Parameters	3-2
3-2	4 Com	npliance Monitoring Well Sulfate (mg/l) Measurements	3-3
4-1	Arse	nic, Copper, and Cadmium (mg/l) in Acid Wells	4-9
4-2	2 Arse	enic, Copper, and Cadmium (mg/l) in Leading Edge Wells	4-9
6-1	Subs	sidence Survey Data (Elevation Feet AMSL)	6-2
		9 Tailing NP (t CaCO ₃ /kt)	
7-2	200	9 Aqueous Alkalinity (mg CaCO3/l)	7-3

Figures

2-1 Acid Well Extraction 2005-2009	
2-2 Barrier Well Extraction 2005-2009	2-3
2-3 Average Daily Pumping Rates for Barrier Wells	
2-4 Average Daily Pumping Rates for Acid Wells	
3-1 Compliance Well Network	
4-1 Contoured 2009 Sulfate Concentrations	4-12
4-2 Change in Contoured Sulfate Concentrations from 2008 to 2009	
4-3 Change in Contoured Sulfate Concentrations from 2006 to 2009	
4-4 Time-Series Plot of Sulfate in SRG946	
4-5 Time-Series Plot of Sulfate in ECG1115A, B, and C	4-16
4-6 Time-Series Plot of Sulfate in ECG1124A, B, and C and ECG1146	4-17
4-7 Time-Series Plot of Sulfate in ECG1145A, B, and C	4-18
4-8 Time-Series Plot of Sulfate in ECG1144A, B, and C	4-19
4-9 Time-Series Plot of Sulfate in ECG1128A, B, and C	
4-10 Time-Series Plot of Sulfate in ECG1118A, B, and C	
4-11 Time-Series Plot of Sulfate in BSG1177A, B, and C and BSG1201	
4-12 Time-Series Plot of Sulfate in BSG1119A, B, and C	4-23
4-13 Time-Series Plot of Sulfate in BSG2782A, B, and C and BSG2784	
4-14 Time-Series Plot of Sulfate in BSG1179A, B, and C and P241B	
4-15 Time-Series Plot of Sulfate in BSG2777A, B, and C	4-26
4-16 Time-Series Plot of Sulfate in BSG2783A, B, and C	4-27
4-17 Time-Series Plot of Sulfate in B2G1157A, B, and C and B2G1193	
4-18 Time-Series Plot of Sulfate in BFG1156A through F	
4-19 Time-Series Plot of Sulfate in BFG1155A through F and B2G1200	
4-20 Time-Series Plot of Sulfate in BFG1195A and B	
4-21 Time-Series Plot of Sulfate in P277	4-32
4-22 Time-Series Plot of Sulfate in B2G1194A and B	···· 4-33
4-23 Time-Series Plot of Sulfate in B3G1197A, B, and C	
4-24 Time-Series Plot of Sulfate in P241C4-25 Time-Series Plot of Sulfate in BSG1148A, B, and C	···· 4-35
4-25 Time-Series Plot of Sulfate in BSG1148A, B, and C4-26 Time-Series Plot of Sulfate in BSG1133A, B, and C	4-30
4-27 Time-Series Plot of Sulfate in BSG1133A, B, and C4-27 Time-Series Plot of Sulfate in BSG1132A, B, and C	4-3/
4-28 Time-Series Plot of Sulfate in W3634-28	
4-29 Time-Series Plot of Sulfate III W303	4-39
4-30 Time-Series Plot of Sulfate in WJG1170A, B, and C4-30	
4-30 Time-Series Flot of Sulfate in WJG1170A, B, and C4-31 Time-Series Plot of Sulfate in WJG1171A, B, and C	
4-32 Contoured 2008 Aluminum Concentrations	4-42
4-33 Change in Contoured Aluminum Concentrations from 2007 to 2008	4 43
4-34 Time-Series Plot of Aluminum in SRG946	
4-35 Time-Series Plot of Aluminum in ECG1115A, B, and C)	4-46
4-36 Time-Series Plot of Aluminum in ECG1146 and ECG1124A, B, and C	4-47
4-37 Time-Series Plot of Aluminum in ECG1128A	
4-38 Time-Series Plot of Aluminum in ECG1118A, B, and C	4-49
4-39 Time-Series Plot of Aluminum in BSG1201	
4-40 Time-Series Plot of Aluminum in BSG2782A, B, and C and BSG2784	
4-41 Time-Series Plot of Aluminum in BSG1119B	
4-42 Time-Series Plot of Aluminum in BSG2777A and B	
4-43 Contoured 2009 pH Values	
4-44 Change in Contoured pH Values from 2008 to 2009	4-55
5-1 Water Surface Elevation Contours September 2008	
5-2 Change in Water Surface Elevation Sept. 2007 to Sept. 2008	
5-3 Change in Water Surface Elevation 1996 to 2008	
6-1 Subsidence Survey Monitoring Locations	6-3
6-2 Time-Series Plots of Ground Elevation Measurements	6-1
7-1 2009 Tailings Circuit Monitoring Data (7-Day Average)	

Kennecott Utah Copper | Environmental Restoration Group

Appendices

- A Groundwater Chemistry Data
- B Groundwater Level Monitoring Data
- C Tailings Monitoring Data

1. Introduction

Kennecott Utah Copper LLC (KUC) is conducting groundwater remediation at its South Facilities as selected by the U.S. Environmental Protection Agency (EPA) and the Utah Department of Environmental Quality (DEQ) in a Record of Decision (ROD; EPA 2000) dated December 13, 2000 for the Kennecott South Zone, Operable Unit 2. In response to the ROD, KUC submitted a Final Design for Remedial Action (RDRA; KUC 2002) for the groundwater remediation in December 2002. EPA and DEQ approved the RDRA and issued an Explanation of Significant Differences (ESD) in June 2003 (EPA 2003). A second ESD (EPA 2007) was issued in June 2007 modifying and clarifying certain aspects of the remedy.

KUC has completed construction of remedy components and now operates under an Operations, Maintenance, and Replacement (OM&R) Plan for South Facilities Groundwater (Version 2, approved April 2009). This plan will be updated from time to time as needed. A requirement of the OM&R Plan is preparation and submittal of annual reports on remedial activities and remedial progress. This report describes remedial activities and results for calendar year 2009 along with comparative changes from previous years.

Groundwater contamination at the South Facilities, referred to as the Zone A Plume, is located immediately down gradient of the old Bingham Reservoir and Bingham Canyon Mine waste rock piles. The plume consists of an acidic core area with low pH and elevated metals surrounded by a partially to fully neutralized zone of elevated sulfate groundwater.

The technical components of the selected South Facilities groundwater remedy include:

- Maintaining source control measures,
- Containing the sulfate plume in Zone A through extraction from barrier wells at the leading edge of the contamination,
- Remediating of the Zone A plume through extraction of heavily contaminated waters from the acidic core of the plume,
- Treating extracted water by reverse osmosis (RO) technology for barrier well water, and by neutralization of acid well water in the tailings pipeline, and
- Monitoring and reporting progress.

2. Remedial Operations

2.1 Groundwater Remediation System

KUC has completed construction of groundwater extraction and treatment systems necessary to implement the remedy. Components of this system are:

- A barrier well extraction system consisting of three wells, B2G1193, BFG1200, and LTG1147, and conveyance lines to deliver water to an RO treatment plant.
- A reverse osmosis treatment plant capable of producing 3,500 acre feet of drinking water per year using feed water from the barrier wells.
- An acidic groundwater extraction system comprised of three wells, ECG1146, BSG1201 and BSG2784, and conveyance to the beginning of the tailings pipeline at the Copperton Concentrator.
- An acidic water treatment system which relies on operating KUC milling
 facilities, specifically a) the tailings pipeline, which serves as a 17-mile plugtype treatment reactor; b) the Copperton Concentrator lime plant, which has
 the ability to add hydrated lime directly to the tailings line as needed; and c)
 the North Tailings Impoundment, which provides a repository for nonhazardous solid treatment residuals within a much larger mass of tailings.

2.2 Extraction and Treatment

Annual extractions for 2005 through 2009 from wells in Zone A are reported in Table 2-1 and shown on Figures 2-1 and 2-2. The 2009 average daily pumping rates for each of the barrier and acid wells are plotted on Figures 2-3 and 2-4, respectively.

Table 2-1 Annual Zone A Groundwater Extraction 2005-2009 (ac-ft)

	2005	2006	2007	2008	2009
Barrier Well	Extraction		•		
B2G1193	2093	2188	2225	2464	2268
BFG1200	1080	2244	2353	2464	2164
LTG1147	292	374	307	30	896
Total	3465	4806	4885	4958	5328
Acid Well Ex	ktraction				X 3
ECG1146	1527	1495	1419	947	665
BSG1201	1292	1300	869	927	910
BSG2784	0	0	1	706	171
Total	2819	2795	2289	2580	1746

Total extraction from barrier wells B2G1193 and BFG1200 was lower in 2009 than in 2008, while production from LTG1147 was notably higher, offsetting lower production from B2G1193 and BFG1200. All three wells were operated more than 95% of the year (Figure 2-3). On Figure 2-3b, a steadily decreasing production rate from BFG1200 is apparent beginning mid September 2009. Production rate was constrained by decreasing well efficiency, which KUC attributes to mineral build up in the well casing and gravel pack. KUC took this well out of service in early 2010 for rehabilitation, and will report on that effort in the next annual report.

Acidic water extraction well ECG1146 operated approximately 48% of 2009 (Figure 2-4a). This well did not operate during the late spring and early fall due to two failed motors and operational constraints limiting the flow rate of acidic water that could be treated in the tailings system.

BSG1201 operated about 93% of 2009 (Figure 2-4b). Well BSG2784 operated about 17% of 2009 (Figure 2-4c) also because of motor problems.

Electrical monitoring was performed at all three acid water extraction wells in the third and four quarters of 2009 to assess the quality of the power supply and its potential impact on motor reliability. In order to increase reliability and minimize downtime, the power supply infrastructure for all three wells is being upgraded in 2010 to improve the power quality delivered to the motors.

All groundwater extracted from the acidic water extraction wells was conveyed to the KUC tailings line at Box NP-5 where it was treated in the tailings line.

KUC's groundwater extractions removed 41,091 tons of sulfate in 2009. Since 1997, KUC has removed over 611,000 tons of sulfate from the principal alluvial aquifer in the South West Jordan Valley.

Barrier Well water from B2G1193 and BFG1200 along with LTG1147 was routed to the RO Plant during 2009 and KUC delivered the produced drinking water to the Jordan Valley Water Conservancy District. Concentrate from the plant was routed to the KUC tailings pipeline. Feed water volumes are indicated in Table 2-2.

Table 2-2 Annual RO Plant Feed Water Volumes (ac-ft)

	2005	2006	2007	2008	2009
RO Treatment	1549	4806	4762	4928	5039

2007

2008

2009

Figure 2-1 Acid Well Extraction 2005-2009

2005

2006

0

Figure 2-3 Average Daily Pumping Rates for Barrier Wells

Figure 2-4 Average Daily Pumping Rates for Acid Wells

Feb-09

Mar-09

Apr-09

May-09

Jun-09

Jul-09

Aug-09

Sep-09

Oct-09

Nov-09

Dec-09

Jan-10

Jan-09

Compliance with Performance Standards and Monitoring Requirements

3.1 Performance Standards

Performance standards for operation and maintenance of the remedy are described in the 2007 ESD and include:

- Extract a minimum of 1,200 acre-feet per year from the core of the acid plume on a five-year rolling average.
- Maintain groundwater sulfate concentration in a network of compliance wells, listed in the OM&R Plan, at or below 1,500 mg/l.

The OM&R Plan specifies required monitoring including sampling frequency, timing, and parameters for compliance and extraction wells.

Performance in 2009 is compared to these performance standards and requirements below. KUC reports separately to the State Trustee for Natural Resources on operations at the RO Plant in compliance with the Natural Resource Damage settlement and implementing project agreements.

3.2 Extraction Rate

Average acid water extraction for the 5-year period 2005 to 2009 was 2,446 acre feet (Table 3-1). Thus, KUC complied with the minimum annual extraction performance standard of 1,200 acre-feet of acid plume water on a 5-year rolling average.

Table 3-1 Five-year average extraction from the acid plume (acre-feet)

	2005	2006	2007	2008	2009	5-Year Average
Extraction	2819	2795	2289	2580	1746	2246

3.3 Required Monitoring

The OM&R Plan specifies required monitoring frequency and timing for compliance wells, which is dependent on sulfate concentrations as shown in Table 3-2. Extraction wells are to be sampled semi-annually in the first and third quarters. Required monitoring parameters are indicated in Table 3-3.

Table 3-2 Compliance Well Sampling Frequency and Timing

Sulfate (mg/l)	Frequency	Timing*
<1,000	Annually	3rd Quarter
1,000-1,250	Semi-annually	1st and 3rd Quarters
>1,250	Quarterly	Each Quarter

^{*}calendar-year quarters

Table 3-3 Compliance and Extraction Well Monitoring Parameters

Table 0-0 Compilative and Ex	
рН	
Arsenic (D)	
Barium (D)	
Cadmium (D)	
Copper (D)	
Fluoride	
Lead (D)	
Selenium (D)	
Nickel (D)	
Sulfate	
+(D)	

^{*(}D) means dissolved

All compliance monitoring wells had sulfate concentrations less 1,000 mg/l and all were sampled in 2009 within the third quarter, at a minimum. Extraction wells were monitored during first and third quarter 2009, at a minimum.

Required monitoring parameters were gathered for compliance and extraction well sampling in 2009, except for fluoride, barium and nickel at HMG1134B and nickel at P192B and W189. KUC inadvertently omitted analysis of these analytes

3.4 Plume Containment

The compliance well network for 2009 is shown on Figure 3-1. One (WJG1169A) of the ten compliance monitoring wells went dry in late 2008 and one additional monitoring wells (WJG1154A) is anticipated to go dry in 2010. Each of the compliance wells that is or soon will be dry is part of a nested site, and KUC had revised the OM&R Plan to designate the next completion below each dry well as the compliance well. EPA and UDEQ approved the revised OM&R Plan in April 2009. Sulfate concentrations in the third quarter of 2009 are listed in Table 3-4; for comparison, third-quarter measurements from 2008 are also listed.

No compliance wells or replacement compliance wells exceeded the sulfate compliance limit of 1,500 mg/l in 2009, and the highest concentration measured was 667 mg/l. No large changes in sulfate concentration occurred in the compliance wells between 2008 and 2009. Sulfate concentrations decreased by more than 10% in three wells and increased by more than 10% in one well. The maximum sulfate increase was 12%.

There does not appear to be any increase in sulfate concentrations in compliance wells that would suggest the potential for future non-compliance with the performance standard.

Table 3-4 Compliance Monitoring Well Sulfate (mg/l) Measurements during Third Quarter____

Well ID	2008	2009				
COG1178A	284	306				
WJG1169A	488	dry				
WJG1169B	455	463				
WJG1154A	352	292				
WJG1154B	329	360				
W189	105	93				
P192B	136	87				
P194B	41	41				
EPG1165A	157	176				
BSG1135B	75	70				
HMG1123A	663	667				
HMG1126B	386	390				

4. Remedial Progress

Analysis of 2009 groundwater monitoring data, especially as shown on the timeseries plots included in this report, indicates that the remedial extraction program is continuing to achieve reduction in contaminant levels.

All water chemistry data collected during 2009 is reported in Appendix A; results from 2008 are also included in Appendix A. Samples were analyzed at Kennecott Environmental Laboratory (KEL), a State of Utah certified analytical laboratory.

For all South Facilities Groundwater sampling, KUC follows the Groundwater Monitoring and Characterization Plan (GCMP; KUC 2005a) and its associated Standard Operating Procedures (SOPs; KUC 2005b), and Quality Assurance Project Plan (QAPP; KUC 2005c). KUC submits quarterly Quality Assurance Reports and an annual GCMP summary to the Division of Water Quality. These reports report data and discuss quality assurance for the data utilized below to assess remedial progress.

4.1 Sulfate

The distribution of sulfate in 2009 in Zone A is represented on Figure 4-1 as contoured sulfate concentrations. In monitoring wells with multiple completions at different depths, the well with the highest sulfate concentration was used to generate the contours. The most recent sampling event during 2009 (or the most recent analyses within the past five years if no 2009 data were available) was used. Changes in contoured sulfate concentrations from 2008 to 2009 are highlighted on Figure 4-2. Figure 4-3 represents the sulfate concentration changes from 2006 through 2009. The time-period of 2006 through 2009 was selected because in 2006 additional plume delineation drilling was completed.

Over most of the area, the sulfate isoconcentrations lines indicate a contraction in the plume footprint between 2008 and 2009. Generally, the sulfate isoconcentration lines for 1500 mg/l and 5,000 mg/l located on the north and east side of the plume area have moved south and west respectively (Figure 4-2), indicating a decrease in the plume footprint. The 15,000 mg/l and 20,000 mg/l isocontours in the ECG1146 area have also generally contracted. Slight increases, for the same time period, in the 10,000 mg/l, 15,000 mg/l and 20,000 mg/l isocontours have occurred east of BSG2784, likely due to the reduced pumping at BSG2784 in 2009.

From 2006 through 2009, the same general contraction of sulfate isocontours is apparent, but with larger changes (Figure 4-3). The large reduction in the footprint underlain by sulfate concentrations in excess of 10,000 and 15,000 mg/L is particularly significant. The main exception to these reductions is on the south side of the plume area where the 1,500 mg/l and 5,000 mg/l isocontours have advanced to the south, likely due to pumping at barrier extraction well LTG1147.

Time-series plots of sulfate concentration for selected monitoring wells are presented and discussed below.

4.1.1 Plume Interior

The plume interior includes areas with groundwater sulfate concentrations greater than 5,000 mg/l.

Most of the changes in sulfate concentration are due to pumping or lack of pumping at ECG1146, BSG1201 and BSG2784. When consistent pumping occurs, surrounding monitoring wells generally show decreasing sulfate concentrations. If partial-year pumping occurs, decreasing trends may be less pronounced, trends level off or trends show increasing sulfate concentrations. Another factor that influences trends includes when the sample was collected with respect to pumping, the distance of the monitoring well from the respective pumping well, and the degree of hydraulic communication between the hydrostratigraphic horizons of a monitor well and the horizons screened in the pumping well.

Zone A Source Area

Comparison of the isoconcentration contours from 2009 with those from 2008 indicates minor changes in the western acid plume area at monitoring well site SRG946 near the Small Bingham Reservoir. Two samples were collected in 2009 and the first sample showed increasing sulfate concentrations (from 16,800 mg/l in 2008 to 18,600 mg/l in 2009) and second sample showed a decrease (17,700 mg/l). Although the 2009 sulfate results from SRG946 are slightly higher than the last sample of 2008, the results are consistent with the overall downward trend apparent on Figure 4-4. However, the rate of decrease appears to be lower between 2005 and 2009 than during the proceeding period. It is likely that sulfate and other contaminant concentrations in this area will reach an equilibrium as contaminants are slowly rinsed from sediments and released over time. Pumping at ECG1146 appears to have little effect on water table at this site but due to the pumping at ECG1146, the water gradient steepens eastward which increases the potential for water to move towards the pumping well.

Monitoring wells ECG1115 A, B, and C are located 1,500 feet upgradient from extraction well ECG1146 along the apparent migration pathway of the Zone A plume. In 2009, sulfate concentrations in ECG1115 A and B decreased (Figure 4-5), while sulfate in ECG1115C increased from 36,900 mg/l in 2008 to 41,700 mg/l. Sulfate concentrations in ECG1115A have been greater than 30,000 mg/l since at least 1996 and now appear to be on a downward trend for the past two years with the 2009 concentration at 28,700 mg/l (Figure 4-5). Sulfate concentrations in ECG1115 B and C have shown marked increases since initiation of pumping at ECG1146, however the last three years ECG1115B shows a decreasing sulfate trend. The very high sulfate concentration in ECG1115C is similar in concentration as compared to the early sampling data from ECG1115A. These overall responses are attributed to induction of horizontal contaminant migration from the Zone A source area or possible induction of vertical migration between horizons. It is also possible that vertical migration is

occurring due in the borehole itself. ECG1115 was drilled using casing driven techniques so that water quality could be collected during drilling. Even through the proper completion materials were placed to seal the annular space, it is possible that the upper higher sulfate concentration has moved downward in the outer annular space.

Acid Extraction Well ECG1146 Area

There was a discernable aquifer response, both in terms of sulfate concentration and water level, to partial year pumping at extraction well ECG1146 (Section 2.2). Examination of the time series concentration plots (Figure 4-6 to Figure 4-10) indicates that sulfate concentrations at most wells within the ECG1146 area either decreased at a slower rate than previous years or increased slightly.

Sulfate concentrations in ECG1146 averaged 19,350 mg/l in 2008 and 18,200 mg/L in 2009 (Figure 4-6). A lower rate of sulfate concentration decline in 2008 and 2009 compared to prior years is apparent. Because all results for 2009 were less than 20,000 mg/l, KUC plotted the area of greater than 20,000 mg/l sulfate slightly smaller and west of ECG1146 (Figure 4-2).

Notably, sulfate concentrations in ECG1124B (Figure 4-6), located adjacent to extraction well ECG1146, decreased from 1,480 mg/l in 2008 to 403 mg/l in 2009.

In ECG1145A, located south of well ECG1146, sulfate decreased from 9,180 mg/l in 2008 to 7,190 mg/l in 2009 (Figure 4-7); however, the rate of decrease was lower than in prior years. Partial-year pumping and the timing of sample collection would explain the sulfate differences over time. The sulfate concentrations in the ECG1145B and C horizons also continued to decline.

In ECG1144A (Figure 4-8), located approximately 500 feet northeast of ECG1146, sulfate concentrations decreased from 7,120 mg/l in 2008 to 6,530 mg/l in 2009, which is a lower rate of decrease compared to previous years. During the same period, ECG1144B increased from 5,490 mg/l to 7,050 mg/l. The changes from previous trends, especially the increase in sulfate in ECG1144B, are certainly due to partial-year pumping at extraction well ECG1146.

The sulfate concentration in monitoring well ECG1128A (Figure 4-9) increased from 5,210 mg/l in 2008 to 6,310 mg/l in 2009, ending a seven-year trend of steadily decreasing sulfate concentrations. This result is certainly due to partial-year pumping at ECG1146 and timing of sample collection. The increasing sulfate concentration in this well is reflected in expansion of the 5,000 mg/l contours on the southwest sector of the sulfate plume.

In ECG1118A, located approximately 1,800 feet east-northeast of ECG1146, sulfate concentration decreased from 9,730 mg/l in 2008 to 9,050 mg/l in 2009 (Figure 4-10). The rate of decrease in 2008 and 2009 was less than previous years, which was certainly due to partial-year extraction at ECG1146.

Acid Extraction Well BSG1201Area

Acid extraction well BSG1201 operated for most of year in 2009. Sulfate in BSG1201 did not change notably from the previous year (Figure 4-11). At the adjacent monitoring wells, BSG1177A and B (Figure 4-11), the sulfate concentration decreased in 2009 at a rate consistent with the previous five years. That the rate of sulfate decline in 2008 and 2009 is consistent with the period from 2004 through 2007 suggests that the lower pumping rate from this well implemented in 2007 remains sufficient to effectively promote mass removal and aquifer remediation.

Sulfate concentration in BSG1119B (Figure 4-12), located at the leading edge of the low pH plume did not change notably from 2008 to 2009.

Acid Extraction Well BSG2784 Area

At acid extraction well BSG2784, sulfate decreased (Figure 4-13) from an average of 12,200 mg/l in 2008 to an average of 11,550 mg/l in 2009. Since BSG2784 was pumped less than two months during 2009, sulfate in BSG2782A (Figure 4-13), located 150 feet west and upgradient of extraction well BSG2784, increased from 19,700 mg/l at end of year 2008 to 24,700 mg/l at end of year 2009. For the same time, BSG2782C decreased from 30,900 mg/l to 24,100 mg/l. In the less contaminated and lower permeability horizon monitored by BSG2782B, sulfate decreased from 6,850 mg/l in late 2008 to 4,320 mg/l in late 2009. Because of the intermittent pumping at BSG2784, it is difficult to separate pumping-induced changes from water-table gradient driven plume migration.

Despite minimal pumping at BSG2784, sulfate concentrations in monitoring wells BSG1179 B and C and P241B, located approximately 1,400 feet west of BSG2784, decreased in 2009, while BSG1179A only showed a slight increase (Figure 4-14). The highest concentration of sulfate at this location occurs in BSG1179C, which decreased from 18,300 mg/l in 2008 to 16,200 mg/l in 2009. Likewise, approximately 1,700 feet southeast of acid extraction well BSG2784 sulfate concentrations in BSG2783B decreased from an average of 16,800 mg/l in 2008 to an average of 14,300 mg/l in 2009 (Figure 4-16).

At monitoring well BSG2777A, located 1,200 feet east and downgradient of extraction well BSG2784, sulfate concentrations increased from 18,700 mg/l to 21,300 mg/l. Partial year pumping at BSG2784 likely caused the increase along with the ground water gradient (Figure 4-15). With the increase in sulfate, the 20,000 mg/l sulfate contour moved slightly east (Figure 4-2).

4.1.2 KUC Deep Well Field

The KUC deep well field area includes barrier extraction wells B2G1193 and BFG1200 and the monitoring wells located on the northeast margin of the plume. Sulfate concentrations in the extraction wells held essentially steady during 2009. Sulfate concentrations in monitoring wells located close to extraction well B2G1193 were also essentially steady in 2009, while other monitoring wells in the well field generally held steady or decreased.

Deep Well B2G1193 Area

B2G1157A, B, and C are located immediately adjacent to barrier extraction well B2G1193. B2G1157A is dry. Sulfate in ECG1157B continued on an overall increasing trend, but appears to be increasing at a slower rate (Figure 4-17). The average sulfate concentration increased from 6,449 mg/l in 2008 to 6,655 in 2009. The sulfate concentration in water extracted from B2G1193 slightly increased from an average of 1,920 mg/l in 2008 to an average of 1,962 mg/l in 2009. Sulfate concentrations in B2G1157C decreased from an average of 424 mg/l in 2008 to 408 mg/l in 2009. The changes at B2G1157 reflect the consequences of pumping at B2G1193, which is drawing water from the interior of the plume as well as the margin. That the sulfate concentration in extraction well B2G1193 has only slightly increased despite higher sulfate concentrations in B2G1157B suggests that the horizon monitored by B2G1157B does not contribute significantly to the overall production from B2G1193.

Monitoring wells BFG1156B, C, D, and E are located approximately half the distance between extraction wells BFG1200 and B2G1193 and are located at the northern leading edge of the 1,500 mg/l sulfate contour. Sulfate concentrations in BFG1156B and BFG1156C were approximately the same as in 2008; sulfate in BFG1156B had been steadily decreasing prior to 2009. Sulfate concentrations in BFG1156D increased slightly from 1,110 mg/l in 2008 to 1,230 mg/l in 2009 (Figure 4-18), likely due to lateral movement of higher sulfate water from the south and west and from vertical movement of higher sulfate water. BFG1156E, last sampled in 1997, was sampled in 2009, and had a higher concentration of sulfate than in 1997, likely for reasons similar to the increase in BFG1156D.

Deep Well BFG1200 Area

Sulfate concentrations over time for extraction well BFG1200 are shown Figure 4-19 along with monitoring well BFG1155A, B, C, D, E, and F. BFG1155A and B are dry. There are seasonal fluctuations in sulfate concentrations in this extraction well. The sulfate concentration in BFG1200 decreased slightly from an average sulfate concentration of 788 mg/l in 2008 to 726 mg/l in 2009. The overall sulfate trend for BFG1200 has been downward since 2006. BFG1155C was last sampled in 2003 and had 733 mg/l compared with 728 mg/l in 2009, while BFG1155D had 327 mg/l in 2003 and 509 mg/l in 2009.

The most recent sample from BFG1155C has a strong affinity for water extracted from BFG1200 (Figure 4-19). This suggests that the horizon monitored by BFG11156C is the contributing the majority of the production. It may also suggest that the sulfate decline observed in BFG1193 is related to decreasing contribution from higher, more contaminated horizons as the water table as dropped. Over time, KUC thus expects continued improvement in BFG1201 water quality.

In well BFG1195A (Figure 4-20), the sulfate concentration decreased from 1,660 mg/l in 2008 to 1,490 mg/l in 2009, encouragingly reversing an eight-year trend of steadily increasing sulfate concentration. BFG1195B decreased from 1,580 mg/l in 2008 to 1,370 mg/l in 2009, the lowest measured sulfate concentration since 2001. It

is likely that the extraction from barrier wells BFG1200 and B2G1193 is causing cleaner water to move vertically and/or laterally to the monitoring wells.

Time-series plots for other monitoring wells in the deep well field area where sulfate concentrations were measured in 2009 are presented here. In P277, the sulfate concentration decreased notably in 2009 (Figure 4-21). At P277, it is noteworthy that the sulfate concentration dropped from 1,640 mg/l in 2008 to 1,360 mg/l in 2009. This change caused the 1,500 mg/l sulfate isocontour line to move inward (Figure 4-2). Sulfate in B2G1194 A and B continued a sustained downward trend (Figure 4-22). A slight increase was measured in B3G1197A, while B3G1197B decreased slightly (Figure 4-23). For B3G1197A, the increase from 237 mg/l in 2008 to 298 mg/l in 2009 likely is related to vertical migration of higher sulfate near the water table. It also is likely that this well will go dry in 2010-2111.

4.1.3 Southeast Margin

Sampling in 2009 indicates an overall continued increase in sulfate in P241C (Figure 4-24). A slight decreases was observed in BSG1148A (Figure 4-25). Sulfate at BSG1148B had not been measured since 1996 (see footnote on Figure 4-25). The measurement in 2009 indicated a significant increase in BSG1148B since 1996. It is likely that the higher sulfate concentration in the BSG1148A level is moving downward to the BSG1148B level. There were no notable changes at BSG1133 B (Figure 4-26) or BSG1132A and B (Figure 4-27). Responses to pumping at extraction well BSG2784 are expected in these areas with time.

4.1.4 West Jordan Well Field

KUC monitors water quality and water levels in and adjacent to the West Jordan municipal well field, which includes wells W363 and W387, shown on Figure 4-1, and W420, not shown. A fourth well, W361, was abandoned by West Jordan in the mid-2000s due to land development activities. Heavy extraction from these four wells in the 1990s caused migration of elevated-sulfate groundwater toward this area and well W363 saw increasing sulfate through the late 1990s (Figure 4-28).

Sulfate concentrations at W363 have declined since 1999 and correspond to reduced annual extraction by West Jordan and increased extraction by KUC. During 1999, W363 had its highest sulfate concentration of 188 mg/l, and in 2009, the average concentration was 113 mg/l, a slight decrease from 125 mg/l in 2008. Well W363 is located approximately 6,700 feet northeast of KUC's barrier well BFG1200. Well W387, located 2,700 feet west of W363, was not sampled in 2009 but has had relatively level sulfate concentration in the 50 mg/l range. The northern-most West Jordan well (W420) was sampled in 2009 and had 37 mg/l sulfate. Both W387 and W420 are not within the sulfate plume pathway.

Monitoring wells located between the leading edge of the sulfate plume and the West Jordan Well field showed generally steady to slightly increasing sulfate concentrations in 2009. WJG1154A, located 3,400 feet southeast of W363, also saw elevated concentrations through the late 1990s and has shown fairly consistent

sulfate concentrations since. The average concentration for WJG1154A in 2009 decreased from 349 mg/l in 2008 to 320 mg/l with seasonal highs and lows (Figure 4-29). Sulfate concentrations in well WJG1154B have increased to 356 mg/l in 2009 from a high of 329 mg/l in 2008. The increase in sulfate at WJG1154B is likely due to vertical movement of water with higher sulfate concentration in the WJG1154A horizon moving downward as the water table declines.

Sulfate concentrations in well WJG1170B (WJG1170A is dry) increased to 339 mg/l in 2009 compared with 260 mg/l in 2008 (Figure 4-30). The water has continued to decline in this general area and it appears that the poorer quality water in the upper portion of the aquifer is moving downward from the WJG1170A horizon into the WJG1170B horizon. WJG1171A has an increasing sulfate trend over time but an actual decrease from 177 mg/l in 2008 to 172 mg/l in 2009 (Figure 4-31). WJG1171B continues to have sulfate concentrations less than 60 mg/l.

4.2 Aluminum

In general, aluminum concentrations continued to decrease in 2009. This constituent is the primary contributor to mineral acidity and influences treatment strategies for acid plume water.

The distribution of aluminum in groundwater in 2009 is shown on Figure 4-32. The aluminum concentration contours for 2009 on this figure were drawn in a similar manner as the sulfate contour map (Section 4.1; Figure 4-1). Changes in aluminum from 2008 to 2009 are highlighted on Figure 4-33. Decreases in aluminum concentration in the Zone A plume generally mimic the decreases in sulfate concentrations. As with sulfate, the decrease in aluminum is attributed primarily to mass removal due to groundwater extraction.

Zone A Source Area

In the western-most portion of the low pH plume, adjacent to the Small Bingham Reservoir, the aluminum concentration at SRG946 remained just below 1,000 mg/l for a third consecutive year (Figure 4-34). This is reflected as a complete contraction of the 1,000 mg/l aluminum isocontour in this area (Figure 4-33). As noted above in the discussion of sulfate in SRG946 (Section 4.1.1), due to the remobilization of precipitated minerals in the immediate Zone A source area, it is likely that aluminum concentrations will continue to be elevated over time in this area.

Acid Extraction Well ECG1146 Area

In 2009, the main area of aluminum concentrations greater than 1,500 mg/l continues to be in the core of the low pH plume around monitoring well ECG1115A, which is northwest and up gradient of extraction well ECG1146. With continued pumping from acid extraction well ECG1146, the area containing greater than 1,500 mg/l aluminum continues to decrease slightly in size. ECG1115A, which contained 1,910 mg/l in 2008 increased to 1,950 mg/l in 2009 (Figure 4-35). During the same period, ECG1115C increased from 1,440 mg/l to 1,680 mg/l and ECG1115B increased

from 263 mg/l to 372 mg/l. Aluminum concentrations in ECG1115 B and C have shown marked increases since initiation of pumping at ECG1146. These responses are attributed to induction of horizontal contaminant migration from the western portion of the Zone A source area, slow release of contaminants from lower-permeability horizons, and/or possible induction of vertical migration from shallower to deeper horizons through the outer borehole wall.

Aluminum concentrations in ECG1146 has decreased with an average concentration of 986 mg/l in 2008 and 908 mg/l in 2009 (Figure 4-36).

Aluminum increased at ECG1128A from 131 mg/l in 2008 to 157 mg/l in 2009 (Figure 4-37). The increase can be attributed to partial-year extraction at acid extraction well ECG1146.

At ECG1118A, aluminum decreased from 503 mg/l in 2008 to 422 mg/l in 2009 (Figure 4-38). The decrease changes the 500 mg/l isocontour as shown on Figure 4-33. Partial-year extraction at ECG1146 appears to have also influenced the aluminum concentration for this area compared with earlier years on the time series curve.

Acid Extraction Wells BSG1201and BSG2784 Area

Between 2008 and 2009, aluminum concentrations in the BSG1201 and BSG2784 area generally remained constant. This is likely due to the partial-year pumping (less than 2 months) at BSG2784. Figure 4-33 does not show any significant changes in aluminum concentration to the west and southwest of BSG2784. Although there are differences between the 2008 and 2009 aluminum contour maps these changes result from an oversight on the 2008 contour map, not from actual changes in the plume geometry. In 2008 aluminum data for BSG1179C was inadvertently excluded from the contouring. Well BSG1179C actually had aluminum concentrations of 1030 mg/L in both 2008 and 2009. Average aluminum concentrations decreased at acid extraction well BSG1201 from 371 mg/l in 2008 to 362 mg/l in 2009 (Figure 4-39) and at acid extraction well BSG2784, decreased from an average of 438 mg/l in 2008 to 417 mg/l in 2009 (Figure 4-40). If continued pumping at both wells can be maintained, it would appear that continued decreases of aluminum concentration for this eastern portion of the low pH plume area will follow.

Aluminum concentrations at monitoring well BSG2782A, located 150 feet west of acid extraction well BSG2784, increased to pre-extraction levels of 1,540 mg/l in 2009 compared to 820 mg/l by end of year in 2008 (Figure 4-40). This is again likely due to the reduced pumping from the adjacent extraction well in 2009. In the less contaminated and lower permeability horizon monitored by BSG2782B, aluminum did not show a notable response to pumping in 2009. In BSG2782C, aluminum decreased from 741 mg/l at the end 2008 to 595 mg/l in late 2009.

On the leading edge of the low pH plume, aluminum in well BSG1119B decreased to 52 mg/l in 2009 from 53 mg/l in 2008 (Figure 4-41). BSG2777A increased from an average of 116 mg/l in 2008 to 124 mg/l in 2009 (Figure 4-42).

4.3 Arsenic, Cadmium, and Copper

In general, the concentrations of arsenic, cadmium, and copper and have been declining in the acid plume due to pumping. These metalloids and metals are prevalent where groundwater has a pH less than or equal to 4.5. Changes are also monitored closely at the leading edge of the pH 4.5 plume. Extraction and monitoring wells located in neutral pH water generally have less than or near detection limit concentrations of arsenic, cadmium, and copper.

Comparisons of arsenic, cadmium, and copper for 2008 and 2009 are included in Table 4-1 for each of the three acid extraction wells. Most of the changes are relatively small, which is comparable with the aluminum and sulfate concentrations changes noted in 2009.

Table 4-1 Arsenic, Copper, and Cadmium (mg/l) in Acid Wells

	ECG1146		BSG1201		BSG2784	
	2008	2009	2008	2009	2008	2009
Arsenic	0.038	0.350	0.019	0.021	0.026	0.024
Cadmium	0.771	0.792	0.643	0.615	0.822	0.782
Copper	66.03	57.57	17.42	16.84	12.69	12.82

At the leading edge of the low pH plume, monitoring wells BSG1119B and BSG2777A show changes (Table 4-2) that would be typical for the reaction boundary of low pH water where the aluminum, arsenic, and copper concentrations are relatively low compared to the core of the low pH plume. BSG1119B shows minor changes for arsenic, cadmium, and copper, while BSG2777A shows slightly increasing arsenic but decreasing cadmium and copper. The influences of pumping at BSG1201 and BSG2784 should cause the metal and metalloid concentrations to hold relative steady and possibly decrease. BSG1119B and BSG2777A are located approximately 2,000 ft and 1200 ft down gradient respectively of extraction wells BSG1201 and BSG2784 and some of the water at the leading edge may move eastward farther into the basin.

Table 4-2 Arsenic, Copper, and Cadmium (mg/l) in Leading Edge Wells

	BSG	1119B	BSG2777A		
	2008	2008 2009		2009	
Arsenic	0.010	0.012	0.031	0.036	
Cadmium	0.780	0.744	1.730	1.555	
Copper	0.072	0.086	0.151	0.115	

4.4 pH

Groundwater pH isocontours for 2009 are shown on Figure 4-43. Figure 4-44 indicates changes in contoured pH values from 2008 to 2009. Specific portions of the pH plume are discussed below.

4.4.1 Plume Core

The 2009 data depict two separate areas containing groundwater with an approximate pH of 3.5 or less. These include the area around the Bingham Creek

Reservoirs which contains residual low pH water; and the area surrounding extraction well ECG1146 and extending east to extraction wells BSG1201 and BSG2784.

Monitoring wells in the Bingham Creek Reservoir area containing a pH of around 3.5 or less include LRG912, which had a pH of 3.8 in 2008 and 3.7 in 2009. B1G951 had a pH of 3.3 in 2008 and 3.5 in 2009. SRG946 had a pH of 3.4 in 2008 and 3.5 in 2009. K120, which has not been sampled in more than five years, had a pH of 3.1. Because all four sites are within or adjacent to the footprint of the Large Bingham Reservoir, residual sediments, especially iron hydroxides with sorbed hydrogen ions, will likely continue to cause the pH of groundwater to remain low for many years.

In the area of extraction well ECG1146, five wells had at least one sampling event in 2009 with a pH of 3.5 or less. These wells include ECG1146, ECG1115A and C, ECG1118A and ECG1144A. Many of the wells in the acid plume vary between 3.2 and 3.8 on a year to year basis. Due to these small changes, the map showing pH changes from 2008 to 2009 (Figure 4-44) has relatively large areas that change from less to 3.5 to greater than 3.5. ECG1117A had a pH of 3.2 in 2008 and 3.7 in 2009 and ECG1121A had a pH of 3.3 in 2008 and 3.6 in 2009. These two wells changed a large portion of the 3.5 pH plume area. ECG1118A has had two years with a pH of less than 3.5 and this data point is the only one with less than 3.5 pH between the eastern and western portion of the low pH plume, so the 3.5 contour was drawn to join both areas.

Monitoring well ECG1124B, located adjacent to extraction well ECG1146 and screened at and below the ECG1146 screen interval, shows a pronounced increase in pH during the past several years with a measurement of 4.0 in 2006, 5.4 in 2007, 5.8 in 2008, and 6.2 in 2009. This increase in pH is likely due to cleaner water located near the base of principal alluvial aquifer rising upward into the base of the low pH plume core.

In the area of extraction wells BSG1201 and BSG2784, two monitoring wells (BGS2782A and BGS1179C) had pH measurements of 3.5 or less. Both extraction wells, BSG1201 and BSG2784, show all sampling events for 2009 with a pH above 3.5.

4.4.2 Leading Edge of Plume

The average pH in well BSG1119B in 2008 was 4.7 and remained the same in 2009. In BSG2777A, the pH increased from an average of 4.3 in 2008 to 4.4 in 2009. Monitoring wells located east of BSG1119B and BSG2777A have neutral or near neutral pH values with no significant changes from 2008 to 2009. The nearest monitoring wells located downgradient of BSG1119B is BSG2779A, B and C. Measurements of pH in all of the wells remained relatively steady from 2008 to 2009. BSG1133A, B, and C are the nearest down gradient wells to BSG2777A and are located approximately 1700 feet east. The pH of BSG1133B was measured at 6.9 to 7.1 in 2008 and 6.9 to 7.3 in 2009.

Kennecott Utah Copper Environmental Restoration Group

Minor changes in pH from 2008 to 2009 were observed at the barrier wells. Average pH measurements for 2009 were 7.4 at LTG1147, 7.1 at B2G1193, and 7.3 at BFG1200.

Along the north side of the plume area at well WJG1169B, pH increased from 7.0 in 2008 to 7.2 in 2009. WJG1169A went dry in late 2008.

Monitoring wells between barrier well BFG1200 and West Jordan's municipal wells, including WJG1154A and B, WJG1170A and B and WJG1171A and B show steady pH measurements above a pH of 7.0.

Figure 4-4 Time-Series Plot of Sulfate in SRG946 (See 4.1.1)

Figure 4-5 Time-Series Plot of Sulfate in ECG1115A, B, and C (See 4.1.1)

Figure 4-6 Time-Series Plot of Sulfate in ECG1124A, B, and C and ECG1146 (See 4.1.1)

Figure 4-7 Time-Series Plot of Sulfate in ECG1145A, B, and C (See 4.1.1)

Figure 4-8 Time-Series Plot of Sulfate in ECG1144A, B, and C (See 2.1.1)

Figure 4-9 Time-Series Plot of Sulfate in ECG1128A, B, and C (See 4.1.1)

Figure 4-10 Time-Series Plot of Sulfate in ECG1118A, B, and C (See 4.1.1)

Figure 4-11 Time-Series Plot of Sulfate in BSG1177A, B, and C and BSG1201 (See 4.1.1)

Figure 4-12 Time-Series Plot of Sulfate in BSG1119A, B, and C (See 4.1.1)

Figure 4-13 Time-Series Plot of Sulfate in BSG2782A, B, and C and BSG2784 (See 4.1.1)

Figure 4-14 Time-Series Plot of Sulfate in BSG1179A, B, and C and P241B (See 4.1.1)

Figure 4-15 Time-Series Plot of Sulfate in BSG2777A, B, and C (See 4.1.1)

Figure 4-16 Time-Series Plot of Sulfate in BSG2783A, B, and C (See 4.1.1)

8000 B2G1157A SO4 B2G1157B SO4 B2G1157C SO4 100 B2G1193 SO4 B2G1157B DTW 7000 200 Screened Intervals and Depth to Water (feet below ground surface 6000 300 400 5000 Sulfate (mg/l) 500 4000 600 700 3000 800 2000 900 1000 1000 1100 1200

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Figure 4-17 Time-Series Plot of Sulfate in B2G1157A, B, and C and B2G1193 (See 4.1.2)

Figure 4-18 Time-Series Plot of Sulfate in BFG1156A through F (See 4.1.2)

Figure 4-19 Time-Series Plot of Sulfate in BFG1155A through F and B2G1200 (See 4.1.2)

Figure 4-20 Time-Series Plot of Sulfate in BFG1195A and B (See 4.1.2)

Figure 4-21 Time-Series Plot of Sulfate in P277 (See 4.1.2)

Figure 4-22 Time-Series Plot of Sulfate in B2G1194A and B (See 4.1.2)

Figure 4-23 Time-Series Plot of Sulfate in B3G1197A, B, and C (See 4.1.2)

P241C SO4 P241C DTW Screened Intervals and Depth to Water (feet below ground surface) С Sulfate (mg/l)

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Figure 4-24 Time-Series Plot of Sulfate in P241C (See 4.1.3)

Figure 4-25 Time-Series Plot of Sulfate in BSG1148A, B, and C (See 4.1.3)

Figure 4-26 Time-Series Plot of Sulfate in BSG1133A, B, and C (See 4.1.3)

Figure 4-27 Time-Series Plot of Sulfate in BSG1132A, B, and C (See 4.1.3)

Figure 4-28 Time-Series Plot of Sulfate in W363 (See 4.1.4)

Figure 4-29 Time-Series Plot of Sulfate WJG1154A, B, and C (See 4.1.4)

600 0 WJG1170A SO4 WJG1170B SO4 WJG1170C SO4 100 WJG1170B DTW 500 200 Screened Intervals and Depth to Water (feet below ground surface) 300 400 400 500 В Sulfate (mg/l) 300 600 С 700 200 800 900 100 1000 1100

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Figure 4-30 Time-Series Plot of Sulfate in WJG1170A, B, and C (See 4.1.4)

1200

Figure 4-31 Time-Series Plot of Sulfate in WJG1171A, B, and C (See 4.1.4)

Figure 4-34 Time-Series Plot of Aluminum in SRG946 (See 4.2)

3500 ECG1115A AI ECG1115B AI 100 ECG1115C AI ECG1115A DTW 3000 200 Screened Intervals and Depth to Water (feet below ground surface) 300 2500 400 500 2000 Aluminum (mg/l) 600 1500 700 1000 1000 500 1100 1200 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Figure 4-35 Time-Series Plot of Aluminum in ECG1115A, B, and C (See 4.2)

3500 0 ECG1124A AI ECG1124B AI 100 ECG1124C AI ECG1146 AI ECG1124B DTW 3000 200 Screened Intervals and Depth to Water (feet below ground surface 300 2500 400 500 2000 Aluminum (mg/l) 1500 800 1000 1000 500 1100 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Figure 4-36 Time-Series Plot of Aluminum in ECG1146 and ECG1124A, B, and C (See 4.2)

Figure 4-37 Time-Series Plot of Aluminum in ECG1128A (See 4.2)

Figure 4-38 Time-Series Plot of Aluminum in ECG1118A, B, and C (See 4.2)

Figure 4-39 Time-Series Plot of Aluminum in BSG1201 (See 4.2)

Figure 4-40 Time-Series Plot of Aluminum in BSG2782A, B, and C and BSG2784 (See 4.2)

60 BSG1119B AI BSG1119B DTW 100 200 50 Screened Intervals and Depth to Water (feet below ground surface)

8 8 9 9 40 Aluminum (mg/l) 20 1000 10 1100 1200 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Figure 4-41 Time-Series Plot of Aluminum in BSG1119B (See 4.2)

6. Subsidence

KUC measures ground surface elevation in Zone A to assess possible ground subsidence caused by groundwater extraction from the plume area. KUC monitored ground elevation at eight survey sites in May 2009.

The specific well sites selected for survey control are shown on Figure 6-1 and located as follows: western edge of the acid plume area (K105 and ECG1116); in the acid plume and adjacent to the west-most acid extraction well (ECG1124); 1,000 feet east of the eastern acid extraction well (BSG1180); and three wells (BSG1137, BFG1156a and WJG1170) within a 4,500 foot radius of the two sulfate extraction wells (B2G1193 and BFG1200) located north of Bingham Creek. The monitoring well sites (survey locations) located near the acid and sulfate extraction wells also coincides with the greatest observed decrease in water elevation. Each well has a cement pad that surrounds the steel surface casing and each pad has a steel bolt cemented into it. The steel bolt was the survey point for six of the wells. The seventh well (K105) was surveyed on top of the steel surface casing. The land survey monument measured in 2009 and in previous years is called 1973 West, located near the northwest corner of Section 15, in Township 3 South, Range 2 West, which is on the northern edge of the plume area.

The sites were surveyed using a global positioning system (GPS) unit (Leica System 530). The degree of accuracy of this GPS unit is approximately 0.25 centimeters (0.098 inches or 0.008 feet). The survey data utilize NAD83 (North American Datum of 1983) and NAVD88 (North American Vertical Datum of 1988).

Ground elevation measurements over time are reported in Table 6-1 and shown on Figure 6-2. Small variations in elevation measurements are attributed to variability inherent in measurement systems. There are no ground elevations changes that KUC attributes to groundwater-extraction induced subsidence.

Figure 4-42 Time-Series Plot of Aluminum in BSG2777A and B (See 4.2)

5. Groundwater Elevation

KUC performs annual water level measurements at about 195 wells in the greater Zone A area during September through early October. KUC uses the water level data to monitor the response of the alluvial groundwater system to ongoing aquifer remediation activities and nearby municipal groundwater extraction. These data also provide insight into the relationship between groundwater recharge, storage, and discharge in the principal alluvial aquifer system.

These water level measurements for 2009 are presented in Appendix B. These water level measurements were corrected for fluid density effects on potentiometric head. Groundwater with elevated total dissolved solid concentrations has a higher specific gravity than do fresh waters. Consequently, corrections to measured water levels were performed to convert the measured hydraulic heads to equivalent fresh-water hydraulic heads. In most portions of the aquifer, where TDS concentrations are moderate, the density corrections applied to water levels are small, generally less than one foot. In areas where groundwater TDS concentrations are elevated appreciably, such as within the plume core, the density corrections may be on the order of several feet.

5.1 Groundwater Gradients

A contour map of water level elevations in the upper portion of the alluvial aquifer in the Zone A plume area for September 2009 is presented on Figure 5-1. Data from pumping wells were omitted from the contouring dataset unless the well had not been pumped for a sufficient amount of time for the water level to recover from localized pumping effects. Some wells along the western margin of the alluvial aquifer that are screened in shallow bedrock were also used in the creation of the water level contour maps. The contour lines shown in Figure 5-1 were generated using the computer program Surfer 8 by Golden Software, Inc.

As shown on Figure 5-1, the hydraulic gradient in the upper portion of the alluvial aquifer is from upland recharge areas in the west toward lower elevation regions to the east, nearer the center of the southwestern Jordan Valley. The hydraulic gradient in the alluvial aquifer is steep (approximately 0.056 or 300 feet per mile) from the east side mine waste-rock dumps to approximately 1,700 feet east of Highway 111. The groundwater gradient then flattens considerably for a distance of approximately 4,000 feet eastward before again becoming appreciably steeper to the west of KUC's barrier wells (B2G1193 and BFG1200). The gradient is again flatter from the production wells east to eastern margin of Zone A plume area with a gradient of about 0.005 (40 feet per mile). The variability in the hydraulic gradient may be due in part to lateral heterogeneity in hydraulic conductivity of the alluvial sediments in the basin, as was observed during KUC well drilling activities in the area.

The influence of groundwater pumping from KUC's production wells is apparent in deflections of the contour lines near the KUC production wells. The water level contours show a general deflection for a relatively large area at and upgradient of acid extraction well ECG1146, in the western portion of the acid plume, indicating that water from that area is being captured at ECG1146.

The other area showing a deflection of the water contours is centered near extraction wells BFG1200 and B2G1193. Both wells were pumped at a relatively steady rate in 2009. This area along with the West Jordan Well Field depicts a large area of ground water extraction. West Jordan regularly pumps their three wells during the months of May through September, depending on water needs. This same area has experienced heavy pumping for a number of years.

Extraction well LTG1147 was pumped for most of 2009 and LTG1139 was pumped less than 4 months during 2009, mostly in the first half. Both are located along 11800 South. A relative large deflection in the water level contours is especially apparent at LTG1147.

Large vertical hydraulic gradients were generally not observed in the Zone A plume area (away from pumping wells) during 2009. Moderate vertical gradients were observed in some localized areas. The lack of appreciable vertical hydraulic gradients is consistent with the generally unconfined condition in the alluvial aquifer system in the project area.

5.2 One-Year Water-Level Elevation Changes

A map showing the contoured change in water levels in the upper portion of the alluvial aquifer system in the greater Zone A area between September 2008 and September 2009 is presented on Figure 5-2. For zones of increasing and decreasing water levels, changes were contoured on one-foot intervals from 0 to 10 feet of change and 5 feet intervals for changes of more than 10 feet.

Water levels as measured from September 2008 to September 2009 along the Eastside Collection and Butterfield Canyon have generally declined 0 to 3 feet. Water level declines are attributed to limited recharge and from pumping east and downgradient from these areas.

Notable water level increases of up to 6 feet near the mouth of Bingham Canyon and up to 1 foot at the mouth of Butterfield Canyon. Near Bingham Canyon, the increase is likely due the localized recharge of meteoric precipitation in Bingham Canyon and due to less extraction of ground water upgradient of the waste rock dumps in Dry Fork Canyon. KUC has added another extraction well in the mouth of Bingham Canyon to assist with alluvial extraction for this area and this likely will cause decreased water levels during 2010 and forward. In Butterfield Canyon, the slight increase is attributed to the above normal precipitation that occurred in late spring during 2009.

Comparison of select spring water levels with fall water levels in individual wells indicates notable seasonal variability in areas along the western margin of the alluvial aquifer, demonstrating the influence of the annual recharge event to water levels in the alluvial aquifer. Appreciable seasonal fluctuations in water levels in wells further eastward are generally not apparent.

Water levels in the Bingham reservoirs area did not significantly change from September 2008 to September 2009. Monitoring wells located immediately upgradient of the reservoirs all decreased less than one foot, which include P248A, B and C along with LRG910, LRG911 and LRG912. Water levels north of the reservoir system increased less than 1 foot for September 2008 to September 2009.

Between September 2008 and September 2009, water levels in the western portion of the acid plume, in the vicinity of acid extraction well ECG1146, increased from 1 to 36 feet. This dramatic increase was due to the partial-year pumping at ECG1146 and the timing of the water levels measurements (September 2009). ECG1146 was not pumping from mid-July through the time when the water levels were measured. ECG1124B, the monitoring well closest to the extraction well increased by 36 feet and wells more distal such as ECG1117A increased by 16 feet; K120 increased by 1.4 feet. Water levels in monitoring wells completed below the highly contaminated portions of the aquifer in the ECG1146 area ranged from a decrease of 6.07 ft at ECG1118C to an increase of 30.53 ft at ECG1145C.

Water levels continued to decline in the eastern portion of the acid plume area near acid extraction wells BSG1201 and BSG2784 from September 2008 to September 2009. Pumping was relatively continuous for BSG1201 in 2008-09 and BSG2784 was pumped for about 2 months in 2009. Monitoring wells within one-quarter mile of the two acid extractions wells and within the principal alluvial aquifer showed the water declining between 1 to 6 feet. Effects of pumping both acid wells for this area appears to have caused a fairly consistent water decline within a quarter mile upgradient and adjacent to the extraction wells. These monitoring wells including BSG1148A and B, BSG1177A, B and C, BSG1179A, B and C, BSG1180B and C, BSG1196B and C, BSG2777A and B, BSG2782A, B and C and BSG2783A B and C all show a decline of 2 to 6 feet. Certain monitoring wells, including WJG1169A, COG1175A, B2G1176A and COG1178A, all located more than half a mile northerly from BSG1201, show water levels declines of 5 to 7.66 feet. Monitoring wells P273 and BSG1153A and B, located about three quarter mile southwest of extraction well BSG1201 showed declines of 1 to 6 feet. BSG1119B, located on the leading edge of the acid plume showed decline4.29 feet.

For the barrier well area, water levels in the immediate vicinity of extraction wells B2G1193 and BFG1200 decreased generally 3 to 6 feet from September 2008 to September 2009. These changes are due to the continuous extraction from the two KUC wells and continued seasonal extraction by West Jordan. Monitoring well BFG1136B, located approximately 2,350 feet northwest of extraction well B2G1193 had the largest water level decline for this area at 6.49 feet which was the only level

for this area that declined by more than 6 feet. At locations further north from B2G1193 and BFG1200, including the West Jordan well field area, water levels declined from 1 to 4 feet between September 2008 and September 2009. Water levels in the barrier well LTG1147 area, which was pumped for most of 2009, declined 2 to 29 feet. Monitoring wells immediately adjacent to LTG1147 declined by 29 feet and sites located one-half mile radius from LTG1147 declined by 2.5 to 10 feet.

Water levels in the BSG1139 clean water extraction well area responded from September 2008 to September 2009 to the partial-year pumping with wells upgradient declining from 2 to 15 feet and wells downgradient declining 2 to 18 feet.

KUC's monitoring at four wells indicates water level changes in the Herriman area from September 2008 to September 2009. Three sites showed a declining water table and one increased. LTG1167A, located approximately one mile northwest of Herriman, declined 3.61 feet; P267B and HMG1856, located on the northwest edge of Herriman, declined 1.36 ft and 1.8 feet respectively; and W403, located one-quarter mile south of Herriman rose 1.5 feet.

KUC measures water levels for more than 12 monitoring wells in the western portion of Zone B including the Daybreak area extending to about 2200 West. From September 2008 to September 2009, water levels for this area varied by up to 2.5 feet with two exceptions. The water level at P255B dropped 4.65 ft and at P257, the water level increased 3.28 ft.

5.3 Water Level Changes from 1996 to 2009

Figure 5-3 shows changes in water levels in the upper portion of the alluvial aquifer system from 1996 to 2009. Data from 1996 used to create this map are reported in Appendix B. The year 1996 represents the initiation of remedial pumping at extraction well ECG1146, and Figure 5-3 shows, in part, the long-term effects of remedial pumping on the alluvial aquifer system. However, multiple hydrodynamic stressors influence water level changes during this time including the discontinuation of artificial recharge from the Bingham Reservoir System (which occurred from 1965 to 1990), improvements in water capture by the eastside collection system in the 1990s, pumping by KUC at wells K60 and K109 prior to 1996, municipal extractions in West Jordan and Herriman, and variations in precipitation and natural recharge.

Most of the water level responses indicated on Figure 5-3 are similar to those apparent in the September 2008 to September 2009 plot (Figure 5-2), but, expectedly, larger in magnitude. The largest water table decline area is centered adjacent to acidic extraction well ECG1146. Monitoring well ECG1124B, located 150 feet north of ECG1146, has declined more than 132 feet from September 1996 to September 2009. The area of influence from pumping at ECG1146 is elongated from north to south and the minus 100-foot contour encompasses approximately 93 acres. Transmissivity for this area is relatively low as compared to the pumping areas east

near the eastern acidic extraction wells and in the sulfate extraction area encompassing B2G1193 and BFG1200.

In the eastern portion of the low pH plume where acidic extraction wells BSG1201 and BSG2784 are located, the maximum water table decline is centered over approximately a one-quarter mile area including monitoring well BSG1177A, located 150 feet east of BSG1201 and monitoring well P241B, located approximately one-quarter mile southwest of BSG1201. The decline for this area is greater than 80 feet from September 1996 through September 2009. The majority of decline for this area occurred after 2003 when pumping was initiated at BSG1201. The area of influence is elongated in a north-south direction that stretches almost two miles and more than one-half mile in an east-west direction. The southern portion of this area of influence also includes sulfate extraction well LTG1147. LTG1147 extraction appears to extend the area of pumping influence south for approximately one-half mile. In addition, draw down influences from pumping at LTG1147 and/or pumping in the Herriman area are up to 78 feet for a distance of up to on-half mile east and southeast of LTG1147.

For the area that includes sulfate extraction wells B2G1193 and BFG1200, the water level decline from September 1996 through September 2009 is as much as 62 feet. For this area, there is less of a pronounced centered area or sink at the pumping wells, which reflects the higher transmissivity for this area.

The combined effect of pumping from the sulfate and acidic extraction wells as shown on Figure 5.3 influences a large area. The 50-foot water level decline contour interval encompasses approximately 6,130 acres. This large area of decline is also influenced from ground water extraction from private and municipal wells in the West Jordan and Herriman areas.

Table 6-1 Subsidence Survey Data (Elevation Feet AMSL)

Survey Site	12/19/02 Survey	6/12/08 Survey	5/8/09 Survey	2008-09 Difference	2002-09 Difference
ECG1116	5318.519	5318.5839	5318.5717	- 0.0122	0.0527
ECG1124	5250.985	5251.0286	5250.9955	- 0.0331	0.0105
BSG1137	4941.591	4941.5732	4941.6297	0.0565	0.0387
BFG1156A	4997.262	4997.3032	4997.3696	0.0664	0.1076
WJG1170	4968.166	4968.1324	4968.1561	0.0237	-0.0099
BSG1180	5078.004	5078.0463	5078.0651	0.0188	0.0611
K105	5341.950	5342.0648	5342.0798	0.0150	0.1298
1973 West		5205.3796	5205.4466	0.0670	

Figure 6-2 Time-Series Plots of Ground Elevation Measurements

Figure 6-2 Continued

7. Tailings Chemistry

KUC manages groundwater extracted from the acid plume and other mining-affected waters in the tailings pipeline and the North Tailings Impoundment. Other waters managed in this circuit include meteoric drainage from the Eastside Collection System, RO concentrate from treatment of the Zone A sulfate plume, and water from dewatering of the mine pit. Acid plume water, meteoric leach water, and RO concentrate are commingled in and pumped through the Wastewater Disposal Pump Station (WDPS) to the beginning of the tailings pipeline. The mine dewatering flows are pumped directly to the process circuit.

KUC adds lime at the Copperton Concentrator to maintain a high pH during ore processing and the Bingham Canyon ore also naturally contains carbonate minerals. The high alkalinity of the tailings process water serves to neutralize the acidity in the low pH waters added to the tailings line from the WWDPS. The small volume of metal and gypsum precipitates that result are co-deposited within a much large mass of tailings in the tailings impoundment. KUC monitors the chemistry of the tailings system to assure that acidic plume waters and other mining-affected waters do not adversely impact the process water system or the long-term acid-generating potential of the tailings.

7.1 Flow and Tailings pH

KUC continuously monitors pH at the North Splitter Box (NSB) and flow through the WDPS. Daily data for 2009 are reported in Appendix C. These data are plotted on Figure 7-1 using a 7-day rolling average. Also plotted is ore throughput through the Copperton Concentrator, which directly correlates to tailings production reporting to the tailings line. The correlations between WDPS flow, mill throughput, and tailings pH are readily apparent in these plots.

The monitoring data show that the tailings process circuit maintained the pH at North Splitter Box above pH 6.7 for every day in 2009, except one day when the measured pH was 4.9. KUC thus met the management criterion listed in Appendix A of the OM&R Plan which specifies that pH at the North Splitter Box be greater than or equal to 6.7 for 90% of the time over a calendar year.

7.2 Tailings Chemistry

As specified by the monitoring program described in Appendix A of the OM&R Plan, KUC collects aqueous metals concentrations in tailings at NSB to confirm that the geochemical processes identified during the Remedial Design investigations are maintained.

There are no numeric criteria for the specific chemical conditions – other than pH, alkalinity, and neutralization potential (NP) – within the process circuit. Inspection of the data presented in Appendix C shows that the pH-driven solubility controls on dissolved metals identified in laboratory and field-scale pilot testing continue to operate.

7.3 UPDES Permit Compliance

KUC maintained compliance with UPDES discharge limits for metals concentrations during 2009.

7.4 Tailings Neutralization Potential

KUC monitors NP monthly in general mill tailings (GMT), which provides tailings neutralization characteristics prior to introduction of acid water flows, and NP and aqueous alkalinity at the North Splitter Box (NSB), which shows the characteristics of reacted tailings and the availability of aqueous neutralization potential. KUC uses these data to measure operation against management criteria and assess the impact of acid water neutralization on the long-term acid rock drainage potential of the tailings.

Monthly and 6-month rolling average NP and aqueous alkalinity data are presented in Table 7-1 and 7-2 respectively. The data indicate that there are some months in which the NP value at NSB is greater than that at GMT and other months in which GMT is greater. However, in all cases the NP is greater than 5 tons CaCO3 eq/kt. Monthly aqueous alkalinity at NSB usually was greater than 10 mg CaCO3 eq/l in all months of 2009.

KUC thus met the management criteria listed in Appendix A of the OM&R Plan.

Table 7-1 2009 Tailing NP (t CaCO3/kt)

-	Mon	thly	6-Mo Aver	
Date	GMT	NSB	GMT	NSB
Jan-09	18	13	33	34
Feb-09	18	16	33	34
Mar-09	78	59	42	39
Apr-09	39	35	31	27
May-09	27	28	32	28
Jun-09	17	18	33	28
Jul-09	23	24	34	30
Aug-09	22	23	34	31
Sep-09	23	27	25	26
Oct-09	23	21	23	24

Nov-09	113	118	37	39
Dec-09	31	31	39	41

Table 7-2 2009 Aqueous Alkalinity (mg CaCO3/I)

78	Mon	thly	6-Month	Average
Date	GMT	NSB	GMT	NSB
Jan-09	34	63	31	59
Feb-09	26	41	26	53
Mar-09	21	14	25	41
Apr-09	24	43	25	42
May-09	36	55	27	49
Jun-09	28	53	28	45
Jul-09	29	15	27	37
Aug-09	26	8	27	31
Sep-09	30	5	29	30
Oct-09	23	56	29	32
Nov-09	121	10	43	25
Dec-09	23	68	42	27

Figure 7-1 2009 Tailings Circuit Monitoring Data (7-Day Average)

8. References

Environmental Protection Agency and Utah Department of Environmental Quality, 2000, Record of Decision, KUC South Zone, Operable Unit 2, Southwest Jordan River Valley Groundwater Plumes, December 13, 130 p.

Environmental Protection Agency, 2003, Explanation of Significant Differences, Kennecott South Zone, OU2, June 23, 6 p.

Environmental Protection Agency, 2007, Explanation of Significant Differences, Kennecott South Zone, OU2, June, 5 p.

Kennecott Utah Copper Corporation (KUC), 2002. Final Design for Remedial Action at South Facilities Groundwater, December 2002.

Kennecott Utah Copper Corporation (KUC), 2005a, Groundwater Characterization and Monitoring Plan, Revision 7, March.

Kennecott Utah Copper Corporation (KUC), 2005b, Standard Operating Procedures for Water Sampling, Revision 5, March.

Kennecott Utah Copper Corporation (KUC), 2005c, Quality Assurance Project Plan for the Groundwater Characterization and Monitoring Plan, Revision 6, March.

Kennecott Utah Copper Corporation (KUC), 2009, Operation, Maintenance and Remediation Plan for South Facilities Groundwater (Version 2, approved April).

Appendix A

Groundwater Chemistry Data

Table A-1	Water Qua	lity Dat	ta 2008-	2009		2009	Compliance	e Extraction	Wells		2009	Complian	ce Monitor	ing Wells						100									
Tubio A T	Trato. Que	рН	Cond	Temp	DTW	TDS	Ca-T	Mg-T	Na-T	K-T	S04	CI-T	F	Alk	Ag	Acidity	AI-D	As-D	Ba-D	Cd-D	Cr-D mg/l	Cu-D mg/l	Fe-D mg/l	Pb-D mg/l	Mn-D mg/l	Hg-T mg/l	Ni-D mg/l	Se-D mg/l	Zn-D mg/l
WELL	DATE	su	uS/cm	С	Feet	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l 7680	mg/l 215	mg/l NM	mg/l as CaCO3	mg/l NM	mg/l as CaCO3	mg/l 249.00	mg/l 0.013	mg/l NM	mg/l 0.855	mg/I <0.01	13.150	0.84	<0.005	185.000	0.0017	7.890	0.011	28.100
31G1120A	4/3/2008	3.62	8530 8270	13	345.45 351.56	11300 11000	424	1380 2870	126 80	6.3 9.6	7680	215	NM	<5	NM	NM -	245.00	0.015	NM	0.790	<0.01	12.000	0.80	0,019	186,000	NM	7,670	0.016	27.700
31G1120A 31G1120B	5/12/2009 4/3/2008	6.68	8460	15	351.56	11700	531	1770	246	8.9	8020	149	NM	390	NM	NM	0.08	0.007	NM	0.003	<0.01	0.040	<0.02	<0.005	15.400	0.0580	0.192	0.006	0.069
31G1120B	5/12/2009	6,58	8540	16	350.97	12500	517	2000	245	13.0	8510	151	NM	378	NM	NM	0.04	0.010	NM	0.003	<0.01	0.025	<0.02	<0.005	19.000	NM	0.190	0.007	0.041
31G951	1/9/2008	3,31	11090	13	63.27	17300	416	1780	129	5.1	12200	244	NM	<5	NM	4340	637,00	0.016	NM NM	0.350	0,026	50,000 46,680	121.00 115.00	<0.005	135,000 126,000	<0.0002 NM	8,180 7,720	0.013	51.900
31G951	1/5/2009	3.42	10510	11	65.30	17100	414	1830	131	6,0	14100	222	NM NM	<5	NM NM	4510	615.00	0.009	NM NM	0.350	0.027	45.640	109.00	<0.005	130,000	NM	7.050	0.028	49,400
31G951	4/21/2009	3.52	10680	15	65.12 438.22	16800 3270	421 614	1740 179	135 95	5.8 4.8	11600 2000	217 159	NM NM	<5 232	NM	4240 NM	<0.02	<0.005	0.019	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	0.038	0,004	0.013
B2G1157A B2G1157A	2/4/2008 4/21/2008	6.84	3380 3270	13	438.22 438.00	3270	614	183	98	5.0	1930	152	NM	230	NM	NM	<0.02	<0.005	0.020	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	0.037	0.005	0.015
B2G1157A	7/10/2008	6.73	3470	15	441.37	3310	605	177	91	4,9	2070	164	NM	232	NM	NM	<0.02	<0.005	0.019	<0.001	<0.01	<0.02	<0.02	<0.005 <0.005	<0.01	<0.0002	<0.03	0.004	0.013
B2G1157A	7/15/2008	6.74	3430	16	441,39	3460	593	173	90	4.8 6.0	2050 6330	163 150	NM NM	228 395	NM NM	NM NM	<0.02	<0.005	0.018	<0.001	<0.01	0.027	<0.02 <0.02	<0.005	<0.01	0,0002	0.030	0.005	0.041
B2G1157B B2G1157B	2/4/2008 4/21/2008	6.79	7380 7040	13	441.16 440.82	9080 8970	488 486	1440	103	6.1	6150	145	NM	397	NM	NM	<0.02	0.007	0.024	<0.001	<0.01	0.032	<0.02	<0.005	<0.01	0.0031	0.034	0.005	0.037
32G1157B	7/11/2008	6.58	6550	17	444.38	9180	496	1470	97	7.2	6540	157	NM	399	NM	NM	<0.02	0.006	0.022	<0.001	<0.01	0.032	<0.02	<0.005	<0.01	0.0030	<0.03 0.031	0.004	0.032
32G1157B	7/15/2008	6.76	7340	17	444.38	9820	423	1270	87	8.3	6620	156	NM NM	397 397	NM NM	NM NM	<0.02	0.008	0.022	<0.001	<0.01	0.035 <0.02	<0.02 <0.02	<0.005	<0.01	0.0028	<0.031	0.003	0.034
32G1157B	10/13/2008	6.84	6830 7850	13	450.11 448.56	9130 9270	454 461	1360 1390	90 97	5.1 9.2	6840 7030	157 162	NM	389	NM	NM	<0.02	0.010	0.023	<0.001	<0.01	0.026	<0.02	<0.005	<0.01	NM	<0.03	0.006	0.035
32G1157B	2/16/2009	6.87	7850 6950	13	448.56	92/0	476	1430	89	7.2	6610	156	NM	392	NM	NM	<0.02	0,007	0,021	<0.001	<0.01	0.025	<0.02	<0.005	<0.01	NM	<0.03	0.005	0.031
32G1157B 32G1157B	4/7/2009 7/13/2009	6.70	5630	18	448.23	9430	453	1410	93	9.1	6540	152	NM	382	NM	NM	<0.02	0.006	0.022	<0.001	<0.01	<0.02	<0.02	<0.005	0.018	NM	<0.03	0.004	0.022
B2G1157B	10/13/2009	6.85	7700	15	451.07	9220	485	1480	96	8.6	6440	165	NM	393	NM	NM	<0.02	0.007	0.024	<0.001	<0.01	0.025	<0.02	<0.005	0.410	NM	<0.03	0.004	0.015
32G1157C	2/14/2008	7.37	1147	13	441.72	740	131	43	33	2.5	298	97	NM	162	NM	NM	<0.02	0.006	0.084	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002 <0.0002	<0.03 <0.03	<0.002	0.015 <0.01
32G1157C	4/22/2008	7.24	1382	15	443.52	1030	197	65 51	42 34	3.2 2.8	474	100 98	NM NM	174	NM NM	NM NM	<0.02	<0.005	0.100	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	0.002	0.016
32G1157C 32G1157C	7/18/2008	7.18 7.35	1307	16	447.57 452.50	974 1030	149 185	60	37	3.0	520	113	NM	176	NM	NM	<0.02	<0.005	0.098	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	<0.002	<0.01
32G1157C	2/20/2009	7.35	1408	14	452.50	1030	180	61	41	3.3	506	116	NM	169	NM	NM	<0.02	<0,005	0.100	<0.001	<0.01	<0.02	<0.02	<0,005	<0.01	NM	<0.03	<0.002	<0.01
B2G1157C	4/6/2009	7.52	1330	15	445.86	1030	175	55	35	3.0	474	103	NM	170	NM	NM	<0.02	<0.005	0.097	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002 <0.002	<0.01
32G1157C	7/17/2009	7.14	1081	18	451.56	860	149	49	38	2.8	316	98	NM	162	NM	NM	<0.02	<0.005	0.088	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM NM	<0.03	<0.002	<0.01
32G1157C	10/12/2009	7,50	1205	16	453,45	844	146	51	37	3.3	337	103	NM	167	NM NM	NM NM	<0.02 25.1*	<0.005	0,096 NM	<0.001 0.260	<0.01 <0.010	<0.02	<0.02	<0.005	47.000	0.0024	2.080	0.002	4.390
32G1176A	12/8/2008	4,27	5140	12	422.13	5510	437 454	618 595	88 90	9.0	3480 3280	159 183	NM NM	<5	NM	NM	26.60	0.008	NM	0.250	<0.010	0.080	<0.02	0,007	53,500	NM NM	1.840	0,008	4,110
32G1176A	12/14/2009	4.54 6.93	4960 3820	13	442.86 442.51	5200 3690	696	198	90	5.2	2310	153	NM	262	NM	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	0.036	0.006	<0.01
32G1176B 32G1193	12/11/2009 2/13/2008	6.72	3410	13	390.63	3100	436	239	74	4.3	1830	190	0.1	210	NM	NM	<0.02	<0.005	0.023	<0.001	<0.01	<0.02	1.60	<0.005	0.066	0.0002	0.032	0.003	0.032
32G1193	6/11/2008	6.50	3390	14	390.63	3120	433	246	77	4.5	1990	194	0.1	212	NM	NM	<0.02	<0.005	0.024	<0.001	<0.01	<0.02	1.00	<0.005	0.093	0.0003	<0.03	0.003	0.051
B2G1193	7/15/2008	6.78	3360	16	462.15	3340	430 447	247 257	74	4.6	1930 1950	192 199	0.1	211	NM	NM NM	<0.02	<0.005 <0.005	0.021	<0.001	<0.01	<0.02	0.78 2.83	<0.005	0,150	<0.0002	<0.03	<0.002	0.025
B2G1193 B2G1193	10/14/2008	6.82 NM	3250 NM	14 NM	390.63 NM	3170 NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	<0.001	NM	NM	<0.02	<0.005	0.120	NM	NM	NM	NM
B2G1193	2/3/2009	NM	NM	NM	NM	NM	462	281	81	4.9	1920	206	0.1	210	NM	NM	NM	NM	0.024	<0.001	NM	<0.02	0.02	<0.005	0.160	NM	NM	0.003	0.017
B2G1193	2/17/2009	7.13	2900	16	390.63	3170	444	265	76	4.4	1980	216	0.2	208	NM	NM	0.05	<0.005	0,020	<0,001	<0.01	<0.02	0.92	<0.005	0.200	NM	<0.03 <0.03	0.003	0.074
B2G1193	4/17/2009	7.07	3430	15	390.63	3090	430	260	76	4.6	2000	209	0.1	195	NM	NM	<0.02	<0.005	0.021	<0.001	<0.01	<0.02	5.06 1.89	<0.005	0.210	NM NM	<0.03	0.004	0.031
B2G1193	7/22/2009	7.28	3230	19	390.63	3350	439	252	73	2.1	1910	190 204	0.1	193	NM NM	NM NM	<0.02	<0.005	0.021	<0.001	<0.01	<0.02	8.15	<0.005	0.350	NM	<0.03	0,004	0.056
B2G1193	11/19/2009	7.10	3560	15	390.63 381.03	3090 1390	437 259	265 73	75 57	5.2 3.0	582	204	NM	194	NM	NM	<0.020	<0.005	NM	<0.001	<0.01	<0.020	<0.02	<0.005	<0.01	<0.0002	<0.030	0.004	0.014
B2G1194A B2G1194A	12/5/2008	7.18 7.15	1979 1989	13	382.26	1290	242	73	64	4.2	544	255	NM	205	NM	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.004	<0.01
B2G1194B	12/5/2008	7.21	2430	12	381.21	2010	370	110	71	3.9	1110	180	NM	202	NM	NM	<0.020	0.006	NM	<0.001	<0.01	<0.020	<0.02	<0.005	<0.01	<0.0002	<0.030	0.004	0,016
B2G1194B	12/1/2009	7.14	2270	14	382.38	1940	332	106	78	5.0	1050	255	NM	206	NM	NM	<0.02	<0.005	NM NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM <0.0002	<0.03	<0.004	<0.01
B3G1197A	1/25/2008	7.48	925	12	332.85	618 660	108	36 38	38 42	2.8	194	98 105	NM NM	155 161	NM	NM NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	0.002	<0.01
B3G1197A B3G1197A	11/12/2008	7.37	959 828	12	339.77	766	128	45	42	3.0	298	104	NM	163	NM	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	< 0.01	NM	<0.03	0.002	<0.01
B3G1197B	1/25/2008	7.46	770	12	332.27	466	77	30	31	3.2	74	112	NM	155	NM	NM	<0.02	0.009	NM	<0.001	<0.01	<0.02	<0.02	< 0.005	<0.01	<0.0002	<0.03	<0.002	<0.01
B3G1197B	11/12/2008	7.41	745	12	33.94	454	74	30	33	2,7	82	116	NM	158	NM	NM	<0.02	0.008	NM NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002 NM	<0.03	0.003 <0.002	<0.01
B3G1197B	11/30/2009	7.57	564	14	346.95	442	128	45	63	3.0	728	113 214	NM NM	159 186	NM NM	NM NM	<0.02 NM	<0.005	0.026	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	NM	<0.01
BFG1155C BFG1155D	4/29/2009 4/29/2009	7.37	1936 1418	15 15	407.27	1510 1050	273 183	91 61	49	3.3	509	123	NM NM	153	NM	NM	NM	0.007	0.032	0.005	<0.01	NM -	<0.02	<0.005	1.7	NM	0.12	NM	0.99
BFG1155E	4/27/2009	7.58	696	14	408.82	388	63	25	32	2.5	60	95	NM	160	NM	NM	NM	0.006	0.074	<0.001	<0.01	<0.02	NM	<0.005	<0.01	NM	<0.03	NM	<0.01
BFG1155F	4/24/2009	7.15	637	15	408,23	388	61	26	31	2.7	47	89	NM	163	NM	NM	NM	0.007	0.08	<0.001	<0.01	<0,02	<0.02	<0.005	<0.01	NM <0.0002	<0.03 0.032	NM 0.004	<0.01
BFG1156B	3/5/2008	6.91	2940	13	418.72	2880	537	163	91	4.8	1690	189	NM MM	201	NM MM	NM NM	<0.02	<0.005 <0.005	NM NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002 NM	<0.032	0,004	<0.01
BFG1156B	4/14/2009	7.03	2970	14	422.27	2860	513	152	82 79	4.3 3.9	1690 1060	204 228	NM NM	198 206	NM NM	NM NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	0,004	<0.01
BFG1156C BFG1156C	3/5/2008 4/17/2009	6.95 7.09	2360 2290	13	418.08 421.60	2070 1860	390 346	100	79	3.8	1030	255	NM	199	NM	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	0.019	NM	<0.03	0.004	<0.01
BFG1156D	1/31/2008	7.09	2190	12	413.62	1840	339	101	57	3.8	1110	137	NM	155	NM	NM	<0.02	0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	0.0002	<0.03	0.004	0.020
BFG1156D	3/13/2009	6.98	2400	13	423,63	2140	370	114	65	4.0	1230	148	NM	158	NM	NM	0.14	<0,005	NM	<0,001	<0.01	<0.032	<0.02 NM	<0.005	0,014 NM	NM <0.0002	<0.03 NM	0.004	0.015 <0.01
BFG1168A	9/9/2008	7.28	1547	16	461,71	1110	200	55	55	2.6	453	159	NM NM	200 199	NM MM	NM NM	NM MM	<0.005	0.021	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.002	0.072
BFG1168A	9/15/2009	7,15	1874	17	469.22 461.46	1390 2110	270 383	76 119	67 72	3.5	598 1150	240	NM NM	189	NM	NM	NM	<0.005	0.020	<0.001	<0.01	<0.02	NM	<0.005	NM	<0.0002	NM	0.004	0.018
BFG1168B BFG1168B	9/9/2008 9/15/2009	7.11	2480 2360	15	468.97	2020	378	111	67	4.1	1090	230	NM	185	NM	NM	NM	<0.005	0.020	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.004	<0.01
BFG1168B BFG1195A	11/11/2008	7.38	2960	13	449.38	2660	499	146	91	4.1	1660	190	NM	227	NM	NM	<0.02	0.007	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	0.028	<0.01
BFG1195A	12/10/2009	6.86	3040	13	451.92	2640	479	136	84	4.4	1490	203	NM	230	NM	NM	<0.02	<0.005	NM NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM <0.0002	<0.03	0.005	<0.01
BFG1195B	11/11/2008	7.14	2790	13	448.84	2500	467	139	82	4.1	1580	184	NM NM	205	NM NM	NM	<0.02 <0.02	0.007	NM NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.004	<0.01
BFG1195B BFG1198B	12/10/2009 9/10/2008	7.16	2900 2210	12	450.41 418.72	2420	434 376	121	71	3,5	1370 1060	189 231	NM NM	185	NM	NM	<0.02	0.007	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0,0002	<0.03	0.004	0.014
	11/4/2009	7.14	2400	15	426,63	1990	366	102	71	5.6	1070	257	NM	193	NM	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	NM	<0,005	<0.01	NM	<0.03	0.004	<0.01 0.023
									56	3,4	833	175	0.1	177	NM	NM	< 0.02	0.007	0.028	< 0.001	< 0.01	<0.02	< 0.02	< 0.005	< 0.01	< 0.0002	< 0.03	0.003	
BFG1198B BFG1200	2/13/2008 6/16/2008	7.07 6.91	2060 1908	13	NM NM	1560 1620	271 266	84	56	3.5	775	173	0.1	175	NM	NM	<0.02	0.006	0.030	<0.001	<0.01	<0.02	< 0.02	< 0.005	0.032	< 0.0002	<0.03	0.003	0.056

WELL DATE BU US/Cm FG 1200 7/18/2008 7.20 2090 BFG 1200 101/42008 7.20 2090 BFG 1200 101/42008 NM MM BFG 1200 2/2/2009 NM BFG 1200 2/2/2009 NM BFG 1200 2/2/2009 NM MM BFG 1200 2/2/2009 NM BFG 1200 1/2/2009 7.43 2000 BFG 1200 11/13/2009 7.43 2000 BFG 1200 11/13/2009 7.43 2000 BFG 1200 11/13/2009 7.40 1830 BFG 1200 11/13/2009 7.70 1830 BFG 1200 11/13/2009 6.53 3440 BFG 1200 11/13/2009 6.53 3440 BFG 1200 11/13/2009 6.69 2470 BFG 1200 11/13/2009 6.69 2470 BFG 1200 6.69 2470 BFG 1200 6.69 2470 BFG 1200 6.69 17/13/2009 BFG 1200 6.69 17/13/2009 BFG 1200 6.69 17/13/2009 BFG 1200 6.71 17/10/2009 BFG 1200 6.71 17/10/2009 BFG 1200 6.71 17/10/2009 BFG 1200 6.71 17/10/2009 BFG 1200 6.72 17/10/2009 BFG 1200 6.73 18/10/2009 BFG 1200 6.74 18/10/2009 BFG 1200 6.75 18/10/200	pH	Cond uS/cm	Temp	DTW Feet	TDS mg/l	Ca-T mg/l	Mg-T mg/l	Na-T mg/l	K-T mg/l	SO4	CI-T mg/l	F mg/l	Alk mg/l as CaCO3	Ag mg/l	Acidity mg/l as CaCO3	Al-D	As-D mg/l	Ba-D	Cd-D	Cr-D	Cu-D	Fe-D	Pb-D	Mn-D	Hg-T	Ni-D	Se-D	Zn-D
BFG1200 102-32/0209 NM NM NM BFG1200 2/2/0209 NM NM NM BFG1200 2/2/0209 NM NM NM BFG1200 2/2/0209 7.19 1933 BFG1200 4/2/0209 7.19 1933 BFG1200 4/2/0209 7.29 1933 BFG1200 7/2/2009 7.20 1830 BFG1200 7/2/2009 7.20 1830 BFG1200 11/9/2009 7.24 1953 MFG1200 11/9/2009 7.24 1953 MFG1200 11/9/2009 7.24 1953 MFG1200 11/9/2009 6.93 3430 BFG1200 11/9/2009 6.93 3430 BFG1200 12/1/2/2009 6.93 3430 BFG1200 11/9/2009 6.93 14/9/2009 6.95 1940 MFG1200 11/9/2009 6.95 1940 MFG1200 11/9/2009 6.95 1940 MFG1200 11/9/2009 6.99 2470 BFG0221 11/1/2/2009 6.99 2470 BFG0221 11/1/2/2009 6.91 17/9/2009 6.91 11/9/2009 6.91 11/9/2009 6.92 11/9/2009 6.92 11/9/2009 6.93 11/9/2009 6.92 11/9/200		2090	17	NM	1620	250	80	53	3,4	758	167	0.1	175	NM	NM	mg/l <0.02	0.006	mg/l 0.030	mg/l <0.001	mg/l <0.01	mg/l <0.02	mg/l 0.03	mg/l <0.005	mg/l <0.01	mg/l 0.0022	mg/l <0.03	mg/l 0.003	mg/l 0,044
BFG1200 2/3/2009 MM N4 BFG1200 2/3/2009 7,19 1993 BFG1200 4/17/2009 7,19 1993 BFG1200 4/17/2009 7,29 1993 BFG1200 11/3/2009 7,29 1200 BFG1200 11/3/2009 7,20 1830 BFG1200 11/3/2009 7,20 3860 BFG1200 11/3/2009 6,59 3,50 3460 BFG1201 4/17/2009 6,59 2470 BFG0201 11/17/2009 6,59 2470 BFG0201 6/19/2009 6,59 2470 BFG0201 11/17/2009 6,59 2470 BFG0201 6/19/2009 6,59 1970 BFG0201 11/17/2009 6,59 1970 BFG0201 11/17/2009 6,59 1970 BFG0201 11/17/2009 6,59 1970 BFG0201 11/17/2009 6,59 1970 BFG0201 12/4/2009 6,59 1970 BFG0201 12/4/2009 6,59 1970 BFG0201 12/4/2009 6,59 1970 BFG0201 11/17/2009 6,59 1970 BFG0201 11/17/2009 6,59 1970 BFG0201 11/17/2009 6,79 1970 BFG0201 11/17/2009 6,79 1970 BFG0201 11/17/2009 6,79 1970 BFG0201 11/17/2009 1/17/2009 6,79 1970 BFG0201 11/17/2009 1/17/2009 6,79 1970 BFG0201 11/17/2009 1/17/2009 1/17/2009 BFG011190 3/14/2009 4,76 7940 BFG011190 3/14/2009 4,76 7940 BFG011120 3/14/2009 7,20 1801 BFG011120 3/14/2009 7,20 1800 BFG011120 3/14/2009 7,20 1800 BFG01120 3/14/2009			14	NM	1530	266	84	53	3.4	787	177	0.1	181	NM	NM	<0.02	<0.005	0.036	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0022	<0.03	<0.003	0.044
## BFG1200			NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	<0.001	NM	NM	<0.02	<0.005	<0.01	NM	NM	NM	NM
### ### ### ### ### ### ### ### ### ##		1411	NM	NM	NM	280	90	60	4.0	758	185	0.1	177	NM	NM	NM	NM	0.034	<0.001	NM	<0.02	0.03	<0.005	<0.01	NM	NM	NM	0.031
BFG1200 17/24/2009 7.00 1830 BFG1200 11/19/2009 7.74 1953 BFG2267 7/11/2008 6.93 3.430 BFG2267 7/11/2008 6.93 3.430 BFG2267 6/4/2009 7.20 3.860 BFG267 12/17/2009 6.93 3.430 BFG267 14/18/2008 6.85 3.940 BFG821 11/14/2008 6.89 2.240 BFG821 12/14/2009 6.89 2.240 BFG821 12/14/2009 6.94 2210 BFG821 12/14/2009 6.94 2210 BFG8089 1/11/2008 6.92 1910 BFG8098 1/11/2008 6.82 1910 BFG8098 1/11/2008 6.82 1910 BFG8098 2/10/2009 6.73 1936 BFG8098 2/10/2009 6.73 1936 BFG8098 1/11/2008 4.67 740 BFG8098 2/10/2009 4.76			15 16	0.00	1560 1500	264 256	85 81	58 55	3.9	745 708	183 180	0.1	173	NM	NM	<0.02	0,006	0.033	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.003	0.013
BRQ287 7/31/2008 6.93 3-34:0 BRQ287 7/31/2008 6.93 3-34:0 BRQ287 16/4/2009 7.20 3860 BRQ287 12/17/2009 6.53 3-46 BRQ281 14/18/2008 6.95 2550 BRQ821 14/18/2008 6.99 2470 BRQ821 15/4/2009 6.94 2110 BRQ821 12/4/2009 6.94 2110 BRQ821 12/4/2009 6.94 2110 BRQ821 12/4/2009 6.94 2110 BRQ821 12/4/2009 6.94 2110 BRQ821 11/11/2008 6.91 1780 BRQ821 6.92 2480 BRQ821 11/11/2008 6.91 1780 BRQ821 8.92 2480 BRQ821 11/11/2008 6.91 1780 BRQ829 9/18/2009 6.87 1780 BRQ829 9/18/2009 6.87 1786 BRQ829 9/18/2009 6.87 1786 BRQ829 9/18/2009 4.67 7850 BSG11198 2/12/2009 4.67 7850 BSG11198 2/12/2009 4.67 6.89 1856 BSG11198 9/14/2009 4.67 6850 BSG11198 9/14/2009 7.35 1811 BSG1125C 61/22008 7.30 1665 BSG1125B 9/12/2009 7.35 1811 BSG1130A 98/2008 7.32 1826 BSG1130A 98/2008 7.32 1826 BSG1130A 98/2008 7.35 1824 BSG1130A 98/2008 7.35 1824 BSG1130A 98/2008 7.35 1824 BSG1130A 98/2008 7.35 1824 BSG1130A 18/2009 7.46 1287 BSG1130A 18/2009 7.27 1826 BSG1130A 18/2009 7.35 1824 BSG1130A 18/2009 7.35 1824 BSG1130A 98/2008 7.32 1828 BSG1130A 91/2009 7.35 1824 BSG1130A 91/2009 7.35 1824 BSG1130A 91/2009 7.27 1826 BSG1130A 91/2009 7.27 1826 BSG1130A 91/2009 7.28 1828 BSG1130A 91/2009 7.29 1828 BSG1130A 91/2009 7.10 2009 BSG1130A 91/2009 7.10 2009 BSG1130A 91/2009 7.11 2009 BSG1130A 91/2009 7.07 2900 BSG1130A 91/2009 7.01 2900 BSG1130A 91/2009 7.07 29			20	0.00	1460	262	84	57	3.7	712	166	0.1	172 175	NM NM	NM NM	<0.02	0.006	0.030	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.003	0.019
BRO287 6,4/2009 7.20 3860 BRO287 14(1)(2008 6.5) 3860 BRO281 4(1)(2008 6.5) 2510 BRO281 4(1)(2008 6.5) 2510 BRO281 4(1)(2008 6.5) 2510 BRO281 4(1)(2008 6.5) 2510 BRO281 1(1)(2008 6.5) 2510 BRO281 1(1)(2008 6.5) 2510 BRO281 1(1)(2008 6.5) 1(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(16	0.00	1430	258	86	58	4.2	707	171	0.1	180	NM NM	NM	<0.02	0.005	0.032	<0.001	<0.01	<0.02 <0.02	<0.02 NM	<0.005	<0.01	NM NM	<0.03 <0.03	0.003	<0.01
BROAGET 12(17/2009 6.53 3440 BROAGET 14(17/2009 6.59 2510 BROAGET 14(17/2008 6.69 2510 BROAGET 14(17/2008 6.69 2470 BROAGET 15(17/2009 6.69 2470 BROAGET 15(17/2009 6.69 2470 BROAGET 15(17/2009 6.69 2470 BROAGET 15(17/2009 6.69 1770 BROAGEM 11(17/2008 6.61 1770 BROAGEM 11(17/2008 1.61 1770 BROAGEM 11(17/2009 1.61 1770 BROAGEM 11(17/20		_	23	287.95	2720	509	126	117	9.8	760	649	NM	380	NM	NM	NM	<0.005	0.041	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	<0.03 NM	0.003	0.024
BRG0821 4/18/2008 6.85 2510 BRG0821 4/18/2008 6.99 2470 BRG0821 6/19/2009 6.89 2470 BRG0821 6/19/2009 6.89 2470 BRG0821 6/19/2009 6.99 2470 BRG0821 6/19/2009 6.99 2470 BRG0899 4/17/2008 6.91 1770 BRG0899 1/11/12/00 6.92 1970 BRG0899 2/10/2009 6.87 1970 BRG0899 2/10/2009 6.87 1970 BRG0899 3/18/2008 6.87 7/850 BSG11198 3/24/2008 4.45 7/850 BSG11198 3/24/2008 4.45 7/850 BSG11198 3/24/2008 4.45 7/850 BSG11198 3/24/2008 4.67 7/850 BSG11198 3/24/2008 4.67 7/850 BSG11198 3/24/2008 4.67 7/850 BSG11198 3/24/2008 7/30 1985 BSG11195C 3/24/2008 8.87 2090 BSG11195C 3/24/2008 8.87 2090 BSG11195C 3/24/2008 8.87 2090 BSG11195C 3/24/2008 8.87 2090 BSG11195C 3/24/2009 7/30 2010 BSG11195C 3/24/2008 7/30 2010 BSG11195C 3/24/2008 8.84 2080 BSG11195C 3/24/2009 7/30 2010 BSG11195C 3/24/2008 8.84 2080 BSG11195C 3/24/2009 7/30 3110 BSG11135C 3/24/2009 7/30 31			17	290.30	2720	520	130	132	10.0	802	651	NM	421	NM	NM	NM	<0.005	0.040	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.007	<0.01
BR0821 111/42008 6.99 2470 BR0821 121/42009 6.99 2470 BR0821 121/42009 6.99 2420 BR0821 121/42009 6.99 12420 BR0821 121/42009 6.94 2310 BR0821 121/42009 6.91 1770 BR08398 111/12008 6.82 1910 BR08398 111/12008 6.82 1910 BR08398 111/12009 6.72 1956 BR08398 9/11/82009 6.73 1956 BR08398 9/11/82009 6.73 1756 BR08398 9/11/82009 6.73 1756 BR08398 9/11/82009 6.73 1756 BR0831198 02/82008 4.67 7/850 BSG11198 02/82008 4.67 7/850 BSG11198 02/82008 4.67 7/850 BSG11198 02/82008 7.30 1665 BSG11198 9/14/2009 7.35 1811 BSG11126 6/12/2008 7.30 1665 BSG11126 6/12/2008 7.30 1665 BSG11126 6/12/2008 7.35 1811 BSG11130A 88/2008 7.32 1826 BSG1130A 88/2008 7.32 1826 BSG1130A 88/2008 7.32 1826 BSG1130A 88/2008 7.35 1826 BSG1130A 18/82008 7.35 1826 BSG1130A 18/82008 7.35 1826 BSG1130A 18/82008 7.35 1826 BSG1130A 18/82008 7.36 1826 BSG1130A 18/82008 7.36 1826 BSG1130A 18/82008 7.36 1826 BSG1130A 18/82008 7.36 1826 BSG1130A 18/82008 7.37 1826 BSG1130A 18/82008 7.38 2000 BSG1130A 18/82008 7.38 2000 BSG1130A 18/82008 7.39 2000 BSG1130A 18/82008 8.37 2000 BSG1130A 18/82008 6.87 2000 BSG1130A 18/82008 6.87 2000 BSG1130A 18/82008 6.87 2000 BSG1130A 18/82008 6.87 2000 BSG1130A 18/82008 6.84 2000 BSG1130A 18/82008 6.84 2000 BSG1130A 18/82008 7.07 2000 BSG1130B 18/82008 7.07 2000 BSG1130B 18/82008 7.07 2000 BSG1130B 18/82008 7.07 2000 BSG			12	290.47 311.09	2540 1780	480 319	115 84	108	9.8 5.9	798 691	679 267	NM NM	430 263	NM MM	NM NM	NM MA	0.007	0.041	<0.001	<0.01	0.028	NM	<0.005	NM	NM	. NM	0.007	<0.01
BROR21 12/4/2009 6.94 2310 BROR398 14/17/2008 6.91 1780 BROR398 14/17/2008 6.91 1780 BROR398 14/17/2008 6.91 1780 BROR398 2/10/2009 6.72 1786 BROR398 9/18/2009 6.72 1786 BROR398 9/18/2009 6.73 1786 BROR398 9/18/2009 6.75 1786 BROR398 9/18/2009 6.75 1786 BROR398 9/18/2009 4.76 7450 BROR398 9/18/2009 4.76 7450 BROR398 9/18/2009 4.76 7980 BROR31198 2/12/2009 4.76 7980 BROR31198 9/12/2009 4.76 7980 BROR31198 9/12/2009 7.35 1811 BROR31198 9/12/2009 7.35 1811 BROR31198 9/12/2009 7.35 1811 BROR31198 9/12/2009 7.32 1826 BROR31198 9/12/2009 7.35 1824 BROR31198 9/12/2009 7.35 1824 BROR31198 9/12/2009 7.35 1824 BROR31198 9/12/2009 7.35 1824 BROR31198 9/12/2009 7.35 1826 BROR31198 9/12/2009 7.30 2009 BROR31198 9/12/2009 7.30 2010 BROR31198 9/12/2009 9.30 2010 BROR31198 9/12/2009 9.31 2009 BROR31198 9/12/2009 9.31 200			12	312.85	1780	313	80	104	5.7	767	276	NM	265	NM	NM	NM	0.005	0.029	<0.001	<0.01	<0.02	NM NM	<0.005	NM NM	<0.0002	NM NM	<0.002	0.026
BRC0999 4/17/2008 6.92 1700 BRC0999 1/11/12008 6.92 1910 BRC0999 2/10/2009 6.72 1916 BRC0999 2/10/2009 6.73 1916 BRC0999 3/18/2008 6.87 1910 BRC0999 3/18/2008 6.87 7/850 BRC0999 3/18/2008 4.67 7/850 BRC0999 3/18/2008 4.67 7/850 BRC0199 3/18/2009 4.76 7/850 BRC0199 3/18/2009 4.76 7/850 BRC0199 3/18/2009 4.76 7/850 BRC0199 3/18/2009 4.76 7/850 BRC01198 3/14/2009 4.76 7/850 BRC01198 3/14/2009 4.76 7/850 BRC01198 3/14/2008 7.30 1856 BRC01198 3/14/2008 7.32 1828 BRC01198 3/14/2008 7.32 1828 BRC01198 3/14/2008 7.32 1828 BRC01198 3/14/2008 7.46 1257 BRC01198 3/14/2008 7.25 1824 BRC01198 3/14/2008 7.25 1828 BRC01198 3/14/2008 8.95 2080 BRC01198 3/14/2008 7.95 2080 BRC01198 3/14/2009 7.95 2080 BRC01198 3/14/2009 7.90 2080 BRC01198 3/14/2009			16	314.18	1840	308	82	109	5.9	679	298	NM	260	NM	NM	NM	<0.005	0,029	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.003	<0.01
BRG0899 11/11/2008 6.82 1910 BRG0899 2/10/2009 6.73 1916 BRG0899 9/18/2009 6.87 1756 BRG0899 9/18/2009 6.87 1756 BRG01198 3/24/2009 4.67 7850 BSG11198 3/24/2008 4.46 78 7850 BSG11198 3/24/2008 4.46 78 7850 BSG11198 9/14/2009 4.69 6.850 BSG11128 9/14/2009 7.30 1665 BSG11128 9/14/2009 7.30 1665 BSG11128 9/12/2009 7.35 1811 BSG1128C 9/12/2009 7.35 1811 BSG1128C 9/12/2009 7.35 1811 BSG1128C 9/12/2009 7.35 1821 BSG113DA 88/2008 7.32 1626 BSG113DA 88/2008 7.32 1626 BSG113DA 88/2008 7.35 1626 BSG113DA 88/2008 7.32 1626 BSG113DA 88/2008 7.35 1626 BSG113DA 88/2008 7.35 1626 BSG113DA 88/2008 7.35 1626 BSG113DA 88/2009 7.15 1624 BSG113DA 88/2009 7.25 1624 BSG113DA 18/2009 7.25 1000 BSG113DA 18/2009 7.27 1000 BSG113DA 18/2009 7.27 1000 BSG113DA 18/2008 6.87 2000 BSG113DA 18/2008 6.87 2000 BSG113DA 18/2008 6.87 2000 BSG113DA 18/2008 6.88 3000 BSG113DA 18/2008 6.88 3000 BSG113DA 18/2008 6.88 3000 BSG113DA 18/2008 7.00 2000 BSG113DA 18/2009 7.10 2000 BSG113DA 18/2009 7.23 2000 BSG113DA 18/2009 7.23 2000 BSG113DA 18/2009 7.00 2000 BSG113DA 18/2009 7.23 2000 BSG113DA 18/2009 7.03 2010 BSG113DA 18/2009			11	315,08	1670	288	77	101	6.0	679	279	NM	262	NM	NM	NM	<0.005	0.028	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	NM	<0.01
BROB99			14	244.91 246.54	1240 1310	229 232	60	63 62	6.4	521	219	NM	214	NM	NM	NM	<0.005	0.040	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002	0.010
BSG1119B 32,42008 4,45 7,450 BSG1119B 82,82008 4,67 7,650 BSG1119B 21,122009 4,76 7,940 BSG1112B 91,142009 4,76 6,850 BSG1112B 61,22008 7,30 1985 BSG112B 61,22008 7,30 1985 BSG112SC 61,22008 7,30 1985 BSG112SC 61,22008 7,38 654 BSG112SC 61,22008 7,38 654 BSG113DA 98,2008 7,32 1826 BSG113DA 98,2008 7,46 1257 BSG113DA 98,2008 7,46 1257 BSG113DA 19,12009 7,27 1824 BSG113DA 19,12009 7,27 1280 BSG113DA 418,2008 6,87 2090 BSG113DA 418,16009 7,11 2070 BSG113DA 31,16009 7,11 2070 BSG113DA 13,16009 7,11			12	246,72	1340	252	62	64	6.7	540 521	214 237	NM NM	214 209	NM NM	NM NM	NM	0.008	0,041	<0.001	<0.01	<0.02	NM NM	<0.005	NM	NM	NM	0.002	<0.01
BSG1119B	9 6.87	1766	16	248.36	1250	229	60	63	6.5	509	229	NM	213	NM	NM	NM	<0.005	0.042	<0.001	<0.01	<0.02	NM NM	<0.005	NM NM	NM NM	NM NM	0.002 NM	<0.01
BSG1119B 2/12/2009 4.76 7940 BSG1119B 2/12/2009 4.56 6850 BSG1112B 6/12/2008 7.30 1685 BSG112B 6/12/2008 7.30 1685 BSG112B 6/12/2008 7.30 1861 BSG112BC 6/12/2008 7.38 654 BSG112BC 6/12/2008 7.38 654 BSG113DA 896/2008 7.32 1826 BSG113DA 896/2008 7.32 1828 BSG113DB 9/1/2009 7.72 1824 BSG113DA 896/2008 7.46 1257 BSG113DA 19/1/2008 7.76 1254 BSG113DA 19/1/2008 6.87 2080 BSG113DA 4/18/2008 6.87 2080 BSG113DA 4/18/2008 6.87 2080 BSG113DA 3/16/2009 7.11 2070 BSG113DA 3/16/2009 7.11 2070 BSG113DA 1/1/20/2009 7.03			13	454.68	9310	406	1260	91	7.0	6050	167	NM	<5	NM	NM	51.70	0.012	NM	0.821	<0.01	0.075	<0.02	0.008	144.000	0.0049	5.320	0.005	1.900
BSG1119B 914,1/2009 4,69 6850 BSG1125B 612/2008 7,30 1685 BSG1125B 612/2009 7,35 1811 BSG1125C 612/2009 7,35 1811 BSG1125C 612/2009 7,35 1811 BSG1130A 898/2008 7,32 917 BSG1130A 898/2008 7,25 1826 BSG1130A 898/2008 7,26 1826 BSG1130B 911/2009 7,27 1230 BSG1132A 11/23/2008 6,89 2150 BSG1132A 41/82/008 6,87 2150 BSG1132A 1916/2009 7,11 2070 BSG1132A 1916/2009 7,11 2070 BSG1132A 1916/2009 7,11 2070 BSG1132A 1916/2009 7,12 2020 BSG1132A 1916/2009 7,10 2020 BSG1132B 192/2009 7,23 2010 BSG1132B 192/2009 7,03 <td></td> <td></td> <td>17</td> <td>458.44</td> <td>9200</td> <td>423</td> <td>1280</td> <td>93</td> <td>11.0</td> <td>6850</td> <td>169</td> <td>NM</td> <td><5</td> <td>NM</td> <td>NM</td> <td>54.30</td> <td>0.009</td> <td>NM</td> <td>0.740</td> <td><0.01</td> <td>0.068</td> <td><0.02</td> <td>0.007</td> <td>155.000</td> <td>0.0051</td> <td>6.290</td> <td>0.007</td> <td>2.030</td>			17	458.44	9200	423	1280	93	11.0	6850	169	NM	<5	NM	NM	54.30	0.009	NM	0.740	<0.01	0.068	<0.02	0.007	155.000	0.0051	6.290	0.007	2.030
BSG1125B 6/12/2008 7.30 1985 BSG1125B 6/12/2008 7.35 1985 BSG1125C 6/12/2008 7.35 854 BSG1125C 6/12/2008 7.38 854 BSG1125C 6/12/2008 7.52 97 BSG1130A 98/2008 7.32 1826 BSG1130A 98/2009 7.25 1824 BSG1130B 98/2009 7.46 1257 BSG1130B 98/2009 7.27 123 BSG1132A 1/12/2008 8.95 2150 BSG1132A 8/19/2009 8.87 2000 BSG1132A 1/16/2009 7.11 2070 BSG1132A 1/16/2009 7.11 2070 BSG1132A 1/16/2009 7.11 2020 BSG1132A 1/16/2009 7.11 2020 BSG1132A 1/16/2009 7.12 2020 BSG1132B 1/12/2009 7.23 2010 BSG1132B 1/12/2009 7.23			13	461.32 463.51	8920 8750	419 420	1230 1200	90 90	11.0	6360 6210	191 185	NM NM	<5	NM NM	NM	53.80	0.012	NM	0.737	<0.01	0.083	<0.02	0.006	127.000	NM	4.770	0.009	2.140
88611258 9/22/2009 7,35 1851 8861125C 67122008 7,38 854 8961125C 9/22/2009 7,52 917 8961130A 982008 7,32 1828 8861130A 982009 7,25 1824 8861130A 982008 7,46 127 8861130B 91/2009 7,27 1230 8861132A 4182008 6,95 2190 8861132A 41872008 6,87 200 8861132A 1907208 7,18 1986 8861132A 1907208 7,18 1986 8861132A 1907208 7,11 207 8861132A 1907208 7,11 207 8861132B 577009 7,11 207 8861132B 1016209 7,23 203 8861132B 1124208 6,84 200 8861132B 1672009 7,01 200 8861132B 17427009 6,84 2960			16	330.75	1140	186	56	54	3.2	164	185 366	NM NM	<5 143	NM NM	NM NM	50.20 NM	0.012 <0.005	NM NM	0.750 <0.001	<0.01	0.090 <0.02	<0.02 <0.02	0.007 <0.005	148.000	NM	5.380	0.034	2.120
BSG112SC 9)22/2009 7.52 917 BSG113DA 80/2008 7.32 1826 BSG113DA 80/2008 7.25 1826 BSG113DA 80/2009 7.25 1826 BSG113DB 90/2009 7.27 1230 BSG113DB 91/2009 7.27 1230 BSG113DA 41/23/2008 7.08 2080 BSG113DA 41/23/2008 6.87 2080 BSG113DA 41/23/2008 6.87 2080 BSG113DA 10/27/2008 7.18 1986 BSG113DA 19/27/2009 7.11 2070 BSG113DA 3/1/2009 7.11 2070 BSG113DA 7/2/2009 7.10 202 BSG113DA 1/2/2009 7.20 230 BSG113DA 1/2/2009 7.22 2300 BSG113DA 1/2/2009 7.22 2300 BSG113DA 1/2/2009 7.22 2300 BSG113DA 1/2/2009 7.22	7.35	1811	17	342.85	1090	201	60	59	3.2	179	367	NM	147	NM	NM	NM	<0.005	NM	<0.001	<0.01	<0.02	<0.02 NM	<0.005	<0.01 <0.01	NM NM	<0.03	0.006 MM	<0.01
BSG1130A 896/2008 7.32 1826 BSG1130A 896/2008 7.42 1824 BSG1130B 896/2008 7.46 1257 BSG1130B 996/2008 7.46 1257 BSG1132A 19/2008 7.08 2080 BSG1132A 419/2008 6.87 2080 BSG1132A 419/2008 6.87 2090 BSG1132A 19/2008 7.18 1986 BSG1132A 19/2009 7.11 2070 BSG1132A 3/16/2009 7.11 2070 BSG1132A 3/16/2009 7.11 2070 BSG1132A 1/12/2009 7.02 2010 BSG1132A 1/12/2009 7.02 2010 BSG1132B 1/12/2009 7.02 2010 BSG1132B 1/12/2009 7.02 2300 BSG1132B 1/12/2009 6.84 2980 BSG1132B 1/12/2008 6.84 2980 BSG1132B 1/12/2008 6.84			17 16	333.65 344.30	484 454	91	28	39	2.3	44	129	NM	203	NM	NM	NM	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
8861130A 92/2009 7.25 1824 8861130B 98/2008 7.26 1825 8861130B 98/2008 7.26 1267 8861130B 1/12/2009 7.27 1230 8861132A 1/12/2008 8.95 270 8861132A 1/12/2008 8.95 270 8861132A 1/12/2008 8.95 270 8861132A 1/12/2008 8.95 270 8861132A 1/12/2008 7.18 1986 8861132A 1/12/2008 7.18 1986 8861132A 1/12/2009 7.11 2007 8861132A 1/12/2009 7.10 2020 8861132A 1/12/2009 7.10 2020 8861132A 1/12/2009 7.10 2020 8861132A 1/12/2009 7.03 2010 8861132B 1/12/2009 7.03 2010 8861132B 1/12/2008 6.84 2010 8861132B 1/12/2008 6.84 2010 8861132B 1/12/2008 6.84 2010 8861132B 1/12/2009 7.07 2280 8861132B 1/12/2009 7.07 2280 8861132B 1/12/2009 7.01 2900 8861132B 1/12/2009 7.01 2900 8861132B 1/12/2009 7.01 2900 8861132B 1/12/2009 8.99 2860 8861132B 1/12/2009 8.99 2860 8861132B 1/12/2009 8.99 2860 8861132B 1/12/2009 8.99 2860 8861132B 1/12/2009 7.03 2010 8861132B 1/12/2009 7.03 2010 8861133B 1/12/2009 7.03 2010 8861133B 1/12/2009 7.03 2010 8861133B 8/12/2008 8.94 2850 8861133B 8/12/2008 7.03 2010 8861133B 8/12/2009 7.03 2010 8861133B 8/12/2009 7.03 2010 8861133B 8/12/2009 7.09 2800 886113B 8/12/2009 7.09 7.00 7.00 7.00 7.00 7.00 7.00 7			16	344.30 356.92	1300	94 242	28 68	41 60	2.1	46 506	128 215	NM NM	205	MM MM	NM NM	NM =0.02	<0.005	NM	<0.001	<0.01	<0.02	NM	<0.005	<0.01	NM	<0.03	NM	<0.01
88G1132A 1/23/208 9,78 2080 88G1132A 1/23/208 6.95 278 88G1132A 4/19/208 6.95 278 88G1132A 4/19/208 6.95 278 88G1132A 1/23/208 6.95 279 88G1132A 1/23/208 7.18 1986 88G1132A 1/23/208 7.18 1986 88G1132A 1/23/208 7.18 1986 88G1132A 1/23/208 7.10 202 88G1132A 1/23/208 7.10 202 88G1132A 1/23/208 7.10 202 88G1132B 1/23/208 7.02 2300 88G1132B 1/23/208 7.02 2300 88G1132B 1/23/208 6.84 2980 88G1132B 1/23/208 6.94 2880 88G1133B 1/23/208 6.94 2880 88G1133B 1/23/208 7.07 3520 88G1133B 1/23/208 7.07 3520 88G1133B 1/23/208 7.29 3310 88G1133B 1/23/209 7.31 3260 88G1133B 1/23/209 7.38 3200 88G1133B 8/23/209 7.39 390 88G1133B 8/23/209 7.39 390 88G1133B 6/20/208 7.39 1007 88G1133B 6/20/208 7.39 1007 88G1133B 1/23/209 7.98 2800 88G1133B 6/20/208 7.39 1007 88G1133B 7/21/209 7.90 3200 88G1133B 7/21/209 7.90 3200 88G113A 6/20/208 7.39 1007 8	7.25	1824	17	360.10	1200	235	63	61	3.4	451	216	NM NM	231	NM	NM	<0.02 <0.03	0.005 1.005	NM NM	<0.001	<0.01	<0.02 <0.02	<0.02 <0.02	<0.005 <0.005	<0.01	<0.0002 NM	<0.03 <0.04	0.003	0.012 <0.01
BSG1132A 1/23/2008 7.08 2000 BSG1132A 4/18/2008 6.95 2150 BSG1132A 1/18/2008 6.95 2150 BSG1132A 1/18/2008 6.95 2150 BSG1132A 1/18/2008 1.718 1998 BSG1132A 1/18/2009 1.718 1998 BSG1132A 1/18/2009 7.18 1998 BSG1132A 1/18/2009 7.18 1998 BSG1132A 1/18/2009 7.18 1998 BSG1132A 1/18/2009 7.10 2020 BSG1132A 1/18/2009 7.10 2020 BSG1132A 1/18/2009 7.23 2020 BSG1132B 1/18/2008 7.02 2290 BSG1132B 1/18/2008 7.02 2290 BSG1132B 1/18/2008 6.84 2000 BSG1132B 1/18/2008 6.84 2000 BSG1132B 1/18/2008 7.09 2700 BSG1132B 1/18/2008 7.09 2700 BSG1132B 1/18/2008 7.09 2.700 BSG1132B 1/18/2009 7.01 2.900 BSG1132B 1/18/2009 7.01 2.900 BSG1133B 1/18/2009 7.01 2.900 BSG1133B 1/18/2008 7.09 2.800 BSG1133B 1/18/2009 7.09 2.800 BSG113B 1/18/2009 7.09 2.8000 BSG113B 1/18/2009 7.09 2.8000 BSG113B 1/18/2009 7.09 2.8000 BSG113B 1			16	360.41	770	133	47	48	3.6	154	202	NM	183	NM	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	0.003	0.014
BSG1132A 4/18/2008 6.95 2150 BSG1132A 4/18/2008 6.987 2000 BSG1132A 10/12/2008 7,18 1986 BSG1132A 10/12/2008 7,18 1986 BSG1132A 1/16/2009 7,11 2070 BSG1132A 7/12/2009 7,10 2020 BSG1132A 7/12/2009 7,03 2010 BSG1132A 7/12/2009 7,03 2010 BSG1132B 1/12/2008 7,02 2930 BSG1132B 4/18/2008 6,84 2960 BSG1132B 1/16/2009 7,09 2760 BSG1132B 1/16/2009 7,09 2760 BSG1132B 1/16/2009 7,07 2810 BSG1132B 1/16/2009 7,07 2810 BSG1132B 1/16/2009 7,07 2810 BSG1132B 1/16/2009 7,13 2910 BSG1132B 1/16/2008 7,15 3850 BSG1132B 1/16/2008			17	363.40 369.23	736 1620	128 295	90	48	2.8 3.7	147	198	NM	183	NM	NM	<0.02	<0,005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.004	<0.01
88G1132A 8192008 8.87 2006 85G1132A 10272008 1.8 187 2008 85G1132A 10272008 7.18 1898 85G1132A 10272008 7.18 1898 85G1132A 1162009 7.11 2070 85G1132A 7.1727209 7.10 2020 85G1132A 7.1727209 7.10 2020 85G1132A 7.1727209 7.10 2020 85G1132B 102462008 7.02 2890 85G1132B 102462008 6.84 2000 85G1132B 10272008 6.84 2000 85G1132B 10272008 6.84 2000 85G1132B 10272008 7.09 2.780 85G1132B 10272008 7.09 2.880 85G1132B 10272008 7.09 2.880 85G1132B 10272008 7.09 2.880 85G1132B 10272008 7.09 2.880 85G1132B 10272008 7.09 2.00 85G1132B 10272009 7.09 2.00 85G113A 7.7127009 7.00 2.00 85G113A 8.7127009 7.00 2.00 85G113A 8.7127009 7.00 2.00 85G113A 8.7127009 7.00 2.00 85G113A 8.7127009 7.70 2.00 85G113A 8.7127009 7.70 2.00 85G113A 8.7127009 7.70 2.00 85G113A 8.71270			15	370.63	1600	300	96	72 79	3.9	713 713	249 240	NM NM	199 198	NM	NM NM	<0.02	<0.005 <0.005	NM NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	0.004	<0.01
BSG1132A 31/6/2009 7.11 2070			17	376.23	1590	289	91	75	3.7	698	234	NM	200	NM	NM	<0.07	<0.005	NM	<0.001	<0.01	<0.02 0.055	<0.02 <0.02	<0.005 <0.005	<0.01	<0.0002 <0.0002	<0.03	0.004	0.029
88G1132A 5/7/2009 7.10 2020 88G1132A 7/72/72009 7.03 2010 88G1132A 10/16/2009 7.03 2010 88G1132B 10/16/2009 7.23 2070 88G1132B 17/24/2008 8.84 3010 88G1132B 11/24/2008 8.84 2060 88G1132B 11/24/2008 7.09 2760 88G1132B 11/24/2008 7.09 2760 88G1132B 11/24/2008 7.09 2760 88G1132B 5/7/2009 7.01 200 88G1132B 5/7/2009 7.01 200 88G1132B 5/7/2009 7.01 200 88G1132B 10/19/2009 7.01 200 88G1132B 10/19/2009 7.01 200 88G1132B 10/19/2009 7.07 200 88G1133B 10/19/2009 7.07 200 88G1133B 10/19/2009 7.07 200 88G1133B 10/19/2009 7.00 200 88G1137A 41/72009 7.01 1140 88G1137A 41/72009 7.01 1140 88G1137A 41/72009 7.01 120 88G1137A 41/72009 7.01 120 88G1137A 41/72009 7.01 130 88		1986	14	378.83	1610	272	83	68	3.4	688	248	NM	195	NM	NM	0.07	<0.005	NM	0,002	<0.01	0.033	<0.02	<0.005	0.014	<0.0002	<0.03	0.005	0.017
BSG1132A 7/2/2009 7.03 2010 BSG1132A 10/16/2009 7.23 2070 BSG1132B 10/16/2008 7.02 2930 BSG1132B 1/2/4/2008 7.02 2930 BSG1132B 4/18/2008 6.84 3010 BSG1132B 1/2/4/2008 6.84 2980 BSG1132B 1/2/7/2009 6.84 2980 BSG1132B 1/2/7/2009 7.01 2990 BSG1132B 3/16/2009 7.01 2990 BSG1132B 5/7/2009 7.01 2990 BSG1132B 1/2/7/2009 7.01 2990 BSG1132B 1/2/7/2009 7.01 2990 BSG1132B 1/2/7/2009 7.01 2990 BSG1132B 1/2/7/2009 7.01 2990 BSG1133B 1/16/2008 7.07 3520 BSG1133B 1/2/2009 7.13 3520 BSG1133B 1/2/2009 7.03 3520 BSG1133B 3/13/2009 7.03 2520 BSG1133B 3/13/2009 7.03 2520 BSG1133B 3/13/2009 7.03 2520 BSG1133B 3/13/2009 7.03 2000 BSG1133B 3/13/2009 7.03 2000 BSG1133B 3/13/2009 7.03 2000 BSG1133B 3/13/2009 7.03 2000 BSG113SB 3/13/2009 7.08 2000 BSG113SB 3/13/2009 7.08 2000 BSG113SB 3/13/2009 7.08 2000 BSG113SB 3/13/2009 7.09 2000 BSG113SB 3/13/2009 7.19 960 BSG113TA 7/13/2009 7.19 960 BSG113TA 7/13/2009 7.19 1208 BSG113TA 7/13/2009 7.19 1208 BSG113TA 3/10/2009 7.19 1208 BSG113TA 3/10/2009 7.19 1208 BSG113TA 3/10/2009 7.19 1208 BSG113TA 3/10/2009 8.55 6.3210 BSG113TA 3/10/2009 8.55 6.3210 BSG113TA 3/10/2009 8.55 6.3210 BSG113TA 3/10/2009 3.58 11330 BSG113TA 3/10/2009 3.58 11330 BSG113TA 3/10/2008 3.58 11330	7.11		14	377.85	1590	275	86	73	3.7	637	274	NM	198	NM	NM	<0.02	<0,005	NM	<0.001	<0.01	<0.02	<0.02	<0,005	<0.01	NM	<0.03	0.005	<0.012
BSG1132A 10/16/2009 7.22 2930 BSG1132B 17/4/2008 7.02 2930 BSG1132B 4/18/2008 6.84 2960 BSG1132B 4/18/2008 6.84 2960 BSG1132B 10/27/2008 7.02 2960 BSG1132B 10/27/2008 7.02 2960 BSG1132B 3/16/2009 7.01 2960 BSG1132B 3/16/2009 7.01 2960 BSG1132B 10/19/2009 7.07 2810 BSG1132B 7/7/7/2009 6.89 2860 BSG1132B 10/19/2009 7.13 2910 BSG1132B 10/19/2009 7.13 2910 BSG1132B 10/19/2009 7.13 2910 BSG1133B 11/18/2008 7.07 3520 BSG1133B 11/18/2008 7.07 3520 BSG1133B 11/18/2008 7.07 3520 BSG1133B 11/18/2008 7.07 3520 BSG1133B 10/18/2009 7.30 3310 BSG1133B 10/18/2009 7.30 3310 BSG1133B 10/18/2009 7.20 3310 BSG1133B 10/18/2009 7.20 3310 BSG1133B 10/18/2009 7.20 3310 BSG1133B 10/18/2009 7.20 3310 BSG1135B 10/18/2009 7.20 2800 BSG1135B 10/18/2009 7.08 2800 BSG1135B 10/18/2009 7.08 2800 BSG1135B 10/18/2009 7.08 2800 BSG1135B 10/18/2009 7.08 2800 BSG1135B 10/18/2009 7.09 8.80 BSG1137A 41/17/2009 7.01 1340 BSG1137A 41/17/2009 7.01 1340 BSG1137A 41/17/2009 7.01 1340 BSG1137A 310/2008 6.81 4580 BSG1137A 310/2009 8.85 3210 BSG1137A 310/2009 7.48 454 5020 BSG1137B 310/2009 3.58 53210 BSG1137B 310/2009 7.25 5000 BSG1137D 310/2009 7.25 5000			16 18	375.75 378.00	1550 1540	281 285	85 87	69 70	3.7	668 644	265 244	NM NM	195	NM	NM	<0.02	<0.005	MM	<0.001	<0.01	<0,02	<0.02	<0.005	<0.01	NM	<0.03	NM	<0.01
BSG11328 4/82008 6.84 3010 BSG1132B 10/27/2008 7.09 2760 BSG1132B 10/27/2008 7.09 2760 BSG1132B 10/27/2008 7.09 2760 BSG1132B 3/16/2009 7.01 2960 BSG1132B 3/16/2009 7.01 2960 BSG1132B 5/7/2009 6.89 2860 BSG1132B 7/27/2009 6.89 2860 BSG1132B 10/19/2009 7.13 2910 BSG1132B 10/19/2009 7.13 2910 BSG1133B 11/18/2008 7.07 3520 BSG1133B 11/18/2008 7.07 3520 BSG1133B 11/18/2008 7.07 3520 BSG1133B 10/13/2009 7.03 310 BSG1133B 10/13/2009 7.03 310 BSG1133B 10/13/2009 7.09 2860 BSG1133B 10/13/2009 7.09 2860 BSG1133B 10/13/2009 7.09 2860 BSG1135B 10/13/2009 7.09 3860 BSG1135B 10/13/2009 7.09 3860 BSG1135B 10/13/2009 7.09 3860 BSG1137A 41/17/2009 7.01 1340 BSG1137A 41/17/2009 7.01 1340 BSG1137A 3/10/2008 7.10 1228 BSG1138A 9/10/2009 6.45 4220 BSG1148A 9/10/2009 6.45 4220 BSG114BA 9/10/2009 7.45 5040 BSG1177A 3/10/2008 3.56 13210 BSG1177B 3/10/2008 3.56 1330 BSG1177C 3/40/2009 7.17 2420 BSG1177B 3/10/2008 3.56 11330 BSG1177PA 6/22/2008 3.71 10180	9 7.23		15	380.98	1550	281	90	73	4.2	640	272	NM NM	191 204	NM NM	NM NM	<0.02 NM	<0.005 NM	NM NM	<0.001 NM	<0.01 NM	<0.02 NM	<0.02 NM	<0.005 NM	<0.01 NM	NM MM	<0.03 NM	0.005 NM	<0.01
BSG1132B 6192008 6.84 2860 BSG1132B 10272008 7.09 2760 BSG1132B 3165209 7.00 7.01 2900 BSG1132B 3165209 7.01 2900 BSG1132B 7572009 7.01 2900 BSG1132B 7572009 7.07 2810 BSG1132B 7572009 7.07 2810 BSG1132B 7572009 7.07 2810 BSG1133B 1059209 7.13 2910 BSG1133B 1059209 7.07 2950 BSG1133B 1059209 7.07 2950 BSG1133B 10592008 7.07 3520 BSG1133B 10592008 7.07 3520 BSG1133B 10592008 7.07 3520 BSG1133B 37127009 7.13 3260 BSG113B 37127009 7.13 3260 BSG113B 7572009 7.13 3260 BSG113B 7572009 7.13 3260 BSG113B 7572009 7.13 3260 BSG113B 7572009 7.13 3260 BSG113B 10572009 7.00 2800 BSG113B 10572009 7.00 33110 BSG113B 10572009 7.00 2800 BSG113B 10572009 7.00 2800 BSG113B 10572009 7.00 2800 BSG113B 10572009 7.00 2800 BSG113B 10572009 7.00 33110 BSG113B 10572009 7.00 33110 BSG113B 10572009 7.10 3280 BSG113B 10572009 7.10 1228 BSG113B 10572009 7.10 1288			13	368.47	2910	530	165	72	4.8	1660	152	NM	231	NM	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	0.004	0.010
BSG11328 10/27/2008 7.09 2760 BSG1132B 5/17/2009 7.01 2810 BSG1132B 5/7/2009 7.01 2810 BSG1132B 5/7/2009 7.02 2810 BSG1132B 5/7/2009 5.69 2860 BSG1132B 10/19/2009 5.13 2860 BSG1132B 10/19/2009 7.13 2860 BSG1133B 41/5/2008 7.15 3860 BSG1133B 41/5/2008 6.94 2850 BSG1133B 11/6/2008 7.20 3310 BSG1133B 10/13/2009 7.30 3310 BSG1133B 5/17/2009 7.30 3310 BSG1133B 10/13/2009 7.30 3310 BSG1133B 10/13/2009 7.30 3310 BSG1133B 10/13/2009 7.30 3310 BSG1135B 10/13/2009 7.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4			15	372.87	2890	530	176	82	5.1	1670	146	NM	228	NM	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	NM	<0.005	<0.01	<0.0002	0.031	0.005	0.019
BSG11328 3/16/2009 7.01 2900 BSG11328 5/7/2009 7.07 2810 BSG11328 7/27/2009 6.89 2860 BSG11328 10/19/2009 7.13 2910 BSG11328 10/19/2009 7.13 2910 BSG11338 11/18/2008 7.07 3520 BSG11338 8/18/2008 6.94 2850 BSG11338 8/18/2008 6.94 2850 BSG11338 8/18/2009 7.13 3260 BSG11338 10/18/2009 7.13 3260 BSG11338 3/13/2009 7.13 3260 BSG11338 3/13/2009 7.13 3260 BSG11338 8/12/2009 7.28 2860 BSG11338 8/12/2009 7.30 3310 BSG11358 8/12/2009 7.30 3130 BSG11358 8/12/2009 7.88 2000 BSG11370 1/12/2009 7.88 2000 BSG11370 1/12/2009 7.19 960 BSG11371 7/12/2009 7.19 960 BSG1137A 7/12/2009 7.19 12/2009 BSG1137A 11/12/2009 7.19 1340 BSG1137A 3/19/2009 6.81 4390 BSG1137A 3/19/2009 7.19 1288 BSG1137A 3/19/2009 4.55 5030 BSG1137A 3/19/2009 4.55 5040 BSG1137A 3/19/2009 4.55 5040 BSG1137A 3/19/2009 4.55 5040 BSG1137A 3/19/2009 4.55 5040 BSG1137A 3/19/2009 3.37 11380 BSG1137B 3/19/2008 3.58 11330 BSG1137C 3/19/2008 3.58 11330 BSG1137C 3/19/2008 3.51 11380 BSG1137C 3/19/2008 7.25 2020 BSG1137A 3/19/2008 3.58 11330 BSG1137C 3/19/2008 3.51 11380 BSG1137C 3/19/2008 7.25 2020 BSG1137A 3/19/2008 3.51 11380			17	378,08	2850	509	167	79	4.9	1710	147	NM	235	NM	NM	0.03	<0.005	NM	<0.001	<0.01	0.034	<0.02	<0.005	<0.01	<0.0002	<0.03	0.004	0.491
BSG1132B 5/7/2009 7.07 2810 BSG1132B 5/7/2009 6.89 2860 BSG1132B 10/19/2009 7.13 2910 BSG1133B 10/19/2008 7.15 2950 BSG1133B 4/15/2008 7.07 3520 BSG1133B 4/15/2008 6.94 2850 BSG1133B 10/13/2008 7.20 3310 BSG1133B 3/13/2009 7.13 3260 BSG1133B 3/13/2009 7.13 3260 BSG1133B 10/12/2009 6.95 3230 BSG1133B 10/12/2009 7.06 2800 BSG1133B 10/12/2009 7.08 2800 BSG1135B 10/12/2009 7.30 3310 BSG1135B 6/8/2008 7.33 1030 BSG1135B 6/8/2008 7.33 1030 BSG1137A 41/17/2009 7.01 1340 BSG1137A 41/17/2009 7.01 1348 BSG1148B 5/12008		_	14	380.50 376.62	2820 2790	487 470	160 151	74 73	4.7	1690 1540	153	NM NM	224	NM	NM	0.06	<0.005	NM	<0.001	<0.01	0.022	<0.02	<0.005	0.013	<0.0002	<0.03	0.004	0.170
BSG1132B 10/19/2009 7.13 2910 585G1133B 11/18/2008 7.15 3650 585G1133B 41/52/008 7.07 3520 585G1133B 41/52/008 6.984 2850 585G1133B 10/13/2008 7.20 3310 585G1133B 10/13/2009 7.13 3260 585G1133B 5/12/2009 7.30 3310 585G1133B 5/12/2009 7.30 3310 585G1133B 6/21/2009 7.08 2800 585G1133B 6/21/2009 7.08 2800 585G1133B 6/21/2009 7.09 2800 585G1133B 6/21/2009 7.30 3310 585G1135B 6/25/2008 7.33 1030 585G1135B 6/25/2008 7.38 1030 585G1135B 7/21/2009 7.09 10/2008 7.20 585G1135B 10/2009 7.09 10/2008 7.20 585G1137A 41/7/2009 7.01 13/40 585G1137A 41/7/2009 7.01 12/28 585G1137A 41/7/2009 7.01 12/28 585G1137A 41/7/2009 7.01 585G1137A 41/7/2009 7.00 5.00 585G1177A 3/0/2008 8.61 4390 585G1177A 3/0/2008 8.61 4390 585G1177A 3/0/2008 4.54 5020 585G1177A 3/0/2008 3.58 11330 585G1177C 3/2/3/2009 7.25 2020 585G1177C 3/2/3/2009 7.25 2020 585G1177C 2/2/3/2009 7.17 24/20 585G1177A 6/2/2/2008 3.71 10160 5			16	377.12	2720	495	158	74	4.9	1610	160 166	NM NM	226	NM NM	NM NM	<0.02	<0.005 <0.005	NM MM	<0.001 <0.001	0.011 <0.01	<0.02 <0.02	<0.02	<0.005 <0.005	<0.01 <0.01	NM NM	<0.03	0,004 NM	<0.01
BSG11338 1/16/2008 7.15 3650 BSG11338 4/15/2008 7.07 3520 BSG11338 6/16/2008 6.84 2850 BSG11338 10/13/2008 7.20 3310 BSG11338 10/13/2009 7.20 3310 BSG11338 3/13/2009 7.13 3260 BSG11338 3/13/2009 7.13 3260 BSG11388 6/12/2009 7.06 2360 BSG11389 6/12/2009 7.06 2360 BSG11389 6/12/2009 7.06 2360 BSG11389 6/12/2009 7.07 30 3310 BSG11389 6/12/2009 7.07 30 3310 BSG11389 7/13/2009 7.07 30 3310 BSG11389 7/13/2009 7.07 30 3310 BSG11389 6/12/2009 7.38 1007 BSG11370 7/13/2009 7.19 960 BSG1137A 7/13/2009 7.19 960 BSG1137A 7/13/2009 7.19 1228 BSG1137A 11/17/2009 7.01 1340 BSG1137A 11/17/2009 7.01 1340 BSG1137A 11/17/2009 7.01 1380 BSG1137A 3/10/2008 6.81 4/390 BSG1137A 3/10/2009 6.45 4/390 BSG1137A 3/10/2009 8.45 5020 BSG1137A 3/10/2009 8.56 3210 BSG1137A 3/10/2008 4.56 5020 BSG1137A 3/10/2008 4.56 5020 BSG1137A 3/10/2008 3.58 1330			18	379.42	2720	495	158	75	4.6	1560	156	NM	217	NM	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.004	<0.01
BSG1133B 4/152008 7,07 3520 BSG1133B 10/13/2008 6,84 2850 BSG1133B 10/13/2008 7,20 3310 BSG1133B 10/13/2008 7,20 3310 BSG1133B 3/13/2009 7,13 3260 BSG1133B 5/1/2009 7,08 2800 BSG1133B 6/12/2009 7,08 2800 BSG1133B 6/12/2009 7,08 2800 BSG1133B 6/12/2009 7,30 3310 BSG1135B 6/12/2009 7,30 3310 BSG1135B 6/12/2009 7,30 3310 BSG1135B 6/12/2009 7,30 100 BSG1135B 7/13/2009 7,19 960 BSG1137A 7/31/2009 7,19 1228 BSG1137A 41/7/2009 7,01 1340 BSG1137A 3/10/2008 5,61 4390 BSG1137A 3/10/2008 5,61 4390 BSG1137A 3/10/2008 5,61 1330 BSG1177A 3/10/2009 5,65 5040 BSG1177A 3/10/2009 3,55 5040 BSG1177A 3/10/2009 3,55 5040 BSG1177C 3/40/2009 3,71 10380 BSG1177C 3/40/2009 3,71 10380 BSG1177C 3/40/2009 7,75 2020 BSG1177A 10/2009 3,71 10380 BSG1177C 3/40/2008 7,75 2020 BSG1177A 3/10/2008 3,71 10380 BSG1177C 3/40/2008 7,75 2020 BSG1177A 3/10/2008 3,71 10380 BSG1177A 3/10/2008 3,71 10380 BSG1177A 3/10/2008 3,71 10380 BSG1177A 3/10/2008 3,71 10380 BSG1177A 3/10/2008 3,71 10480			15	382.53 409.51	2690 3780	489 654	163 247	78 91	5.5	1570 2400	168 141	NM NM	225 302	NM NM	NM NM	<0.02	<0,005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	< 0.01	NM	<0,03	0.004	<0.01
BSG11338 6182008 6.84 2850 BSG11338 10/13/2009 7.20 3310 BSG11338 3/13/2009 7.20 3310 BSG11338 3/13/2009 7.01 3320 BSG11338 5/1/2009 7.08 3220 BSG11338 10/12/2009 7.08 3220 BSG11338 10/12/2009 7.30 3310 BSG11358 61/2009 7.30 1000 BSG11358 61/2008 7.33 1000 BSG11358 61/2008 7.33 1000 BSG11358 61/2008 7.33 1000 BSG11358 7/12/2009 7.19 960 BSG1137A 7/12/2009 7.10 1228 BSG1137A 41/12/2009 7.01 1340 BSG1137A 11/17/2009 7.01 1340 BSG1137A 11/17/2009 7.01 1340 BSG1137A 11/17/2009 7.01 1340 BSG1137A 11/17/2009 7.01 1340 BSG1137A 310/2008 6.61 4390 BSG1137A 310/2008 6.61 4390 BSG1137A 310/2008 3.56 3210 BSG1137A 310/2009 6.45 4220 BSG1137A 310/2009 6.45 4220 BSG1137A 310/2009 3.31 1030 BSG1137B 310/2008 3.56 10310 BSG1137B 310/2008 3.56 10380 BSG1137B 310/2008 3.57 10380 BSG1137B 310/2008 3.57 10380 BSG1137C 3/45/2009 7.25 2020 BSG1137A 310/2008 3.57 10380 BSG1137B 40/2008 7.25 2020 BSG1137A 310/2008 3.57 10380 BSG1137B 40/2008 7.25 2020 BSG1137A 310/2008 3.57 10380 BSG1137B 60/2008 3.71 10180 BSG1137B 60/2008 3.71 10180 BSG1137B 6/23/2008 3.71 10188			15	409.76	3790	653	251	94	5.8	2380	139	NM NM	302	NM	NM	<0.02	<0.005 <0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	0.004	0.027
BSG11338 3/13/2009 7.13 3200 BSG11338 3/13/2009 7.00 6.95 3230 BSG11338 8/21/2009 7.08 2800 BSG11338 8/21/2009 7.08 2800 BSG11358 8/21/2009 7.30 3310 BSG11358 8/25/2008 7.33 1030 BSG11358 8/25/2008 7.33 1030 BSG11358 8/25/2008 7.33 1030 BSG11358 7/13/2009 7.10 1228 BSG11358 7/13/2009 7.10 1228 BSG1137A 4/17/2009 7.01 1340 BSG1137A 4/17/2009 7.01 1340 BSG1137A 11/17/2009 7.01 1340 BSG1137A 11/17/2009 6.55 36 3210 BSG117A 3/10/2008 8.56 4220 BSG117A 3/10/2009 8.56 3210 BSG117A 3/10/2008 4.56 5000 BSG117A 3/10/2008 4.56 5000 BSG117TA 3/10/2008 4.56 5000 BSG117TA 3/10/2008 3.58 11330 BSG117TG 3/10/2008 3.58 11330 BSG117TG 3/10/2008 3.57 11380 BSG117TG 3/10/2008 7.25 2020 BSG117TO 3/10/2008 7.25 2020 BSG117TO 3/10/2008 7.25 2020 BSG117TA 9/86/2008 3.71 10168 BSG117TB 6/22/2008 3.71 10168			17	413.11	3670	627	241	89	5.9	2240	141	NM	304	NM	NM	0.04	0.006	NM	<0.001	<0.01	<0.02	<0.02	<0.005 <0.005	<0.01	<0.0002	0.032 <0.03	0.004	0.015
BSG11338 S1/12009 6.95 3220		3310	14	415.71	3470	567	219	82	5.4	2470	137	NM	294	NM	NM	<0.02	0.011	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0,0002	<0.03	0.005 <0.002	<0.023
BSG11338 8/21/2009 7.08 2800			14	415.62	3250	508	214	83	5.2	2030	142	NM	283	NM	NM	<0.02	<0,005	NM	<0.001	<0.01	<0.02	1.76	<0.005	<0.01	NM	<0.03	0.005	<0.01
BSG1133B 10/12/2009 7.30 3310 BSG113SB 66/2008 7.33 100 BSG113SB 66/2008 7.38 1007 BSG113SB 8252008 7.38 1007 BSG113SB 7713/2009 7.10 1228 BSG1137A 713/2009 7.01 134 BSG1137A 417/2009 7.01 1328 BSG1137A 417/2009 7.01 134 BSG113A 99(2008 8.81 4390 BSG114BA 99(2008 8.81 4390 BSG114BB 5/10/2009 5.86 3210 BSG1177A 3/9/2009 4.55 590 BSG1177B 3/25/2009 3.71 1038 BSG1177C 3/8/2008 7.25 2020 BSG1177B 2/22/2009 3.71 1038 BSG1177A 3/9/2008 3.71 1038 BSG1177B 2/22/2009 3.71 1038 BSG117BA 6/22/2009 3.71			15	414,97 416,91	3360 3250	551 542	236 237	87	5.8	1990	142 145	NM NM	293	NM	NM	<0.02	0.010	NM	<0.001	0.014	<0.02	<0.02	<0,005	<0.01	NM	<0.03	0.004	0.010
88G1138B 682008 7.33 1030 88G1138B 625208B 7.38 1007 88G1138C 738 1007 88G1138C 7313209 7.39 960 88G1137A 701208B 7.10 1228 88G1137A 41772099 7.01 1246 88G1137A 41772099 8.61 4400 88G1148A 987208B 6.61 4400 88G1148B 574208B 6.65 4420 88G1148B 574208B 4.54 5020 88G1177A 310208B 4.54 5020 88G1177B 310208B 3.58 11330 88G1177B 310208B 3.58 11330 88G1177C 386208B 7.25 2020 88G1177C 386208B 7.25 2020 88G1177A 316208B 7.25 2020 88G1177A 316208B 7.25 2020 88G1177B 7.2752099 7.71 7.2420 88G1177A 366208B 7.25 2020 88G1177A 366208B 3.71 10188 88G1177C 366208B 3.71 10188			15	418.74	3120	496	237	83	5.8	1930	145	NM NM	279 281	NM NM	NM NM	<0.02	<0.005	NM MM	<0.001 <0.001	<0.01 <0.01	<0.02	<0.02 <0.02	<0.005	<0.01	NM	<0.03	0.004	<0.01
BSG11358 7/13/2009 7.19 960 BSG1137A 7/21/2008 7.10 1228 BSG1137A 41/7/2009 7.01 1288 BSG1137A 41/7/2009 7.01 1288 BSG1137A 41/7/2009 7.01 1288 BSG1137A 41/7/2009 7.01 4288 BSG1148A 89/2088 6.81 1222 BSG1148A 99/2009 6.45 4220 BSG1148A 99/2009 6.45 4220 BSG1148A 99/2009 6.45 420 BSG1148A 91/2009 6.45 420 BSG117A 31/2009 4.56 590 BSG1177A 31/2009 4.56 590 BSG1177B 31/20098 7.25 200 BSG1177C 38/2008 7.25 2000 BSG1177C 38/2008 7.25 2000 BSG1177C 38/2008 7.25 2000 BSG1177A 4220 BSG1177A 38/2008 7.25 2000 BSG1177B 38/2008 7.25 2000 BSG1177A 38/2008 7.25 2000 BSG117AA 6/28/2008 3.71 10198	7.33		16	272.50	584	106	34	37	2.8	75	152	NM	203	NM	NM	<0.02	<0.005	0,131	<0,001	<0.01	<0.02	<0.02	<0,005 <0,005	<0.01 <0.01	NM <0.0002	<0.03 <0.03	0.004	<0.01
BSG1137A 7031/2008 7.10 1228 BSG1137A 4/17/2009 7.01 1340 BSG1137A 11/17/2009 7.48 1228 BSG1137A 11/17/2009 7.48 1228 BSG1137A 11/17/2009 7.48 1228 BSG1148A 898/2008 6.81 4390 BSG1148B 51/2009 5.96 3210 BSG1177A 31/02009 4.54 5020 BSG1177A 31/02009 4.55 500 BSG1177A 31/02009 3.71 10380 BSG1177C 38/2009 3.71 10380 BSG1177C 38/2009 3.71 10380 BSG1177C 38/2009 7.17 2420 BSG1177A 49/2009 7.17 2420 BSG1177A 3/8/2009 7.17 2420 BSG1177C 38/2009 7.17 2420			16	274.60	608	102	32	38	3.1	75	149	NM	204	NM	NM	<0.02	<0.005	0.145	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	<0.002	0.033
BSG1137A 417/2009 7.01 1349 SSG1137A 11/17/2009 7.08 1238 SSG1137A 11/17/2009 7.48 1238 SSG1134A 98/2008 6.61 4200 SSG114AB 98/2008 6.61 4200 SSG114AB 91/10/2009 6.45 4220 SSG114AB 51/12008 5.66 3210 SSG1177A 31/10/2008 4.54 5020 SSG1177A 31/10/2008 4.54 5020 SSG1177B 31/10/2008 3.58 11330 SSG1177B 31/10/2008 7.25 2020 SSG1177C 38/2008 7.25 2020 SSG1177C 38/2008 7.25 2020 SSG1177A 40/2008 7.27 2420 SSG1177A 96/26/2008 3.71 10198 SSG1177A 96/26/2008 3.71 10198			19 16	212.15 355.93	578	104 147	34	40	3.2	70	153	0.1	198	NM	NM	<0.02	<0.005	0.150	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.002	<0.01
BSG1137A 11/17/2009 7-7-48 1228 BSG1148A 99/2008 6-61 4390 BSG1148A 9/10/2009 6-4.5 4220 BSG1148A 9/10/2009 6-4.5 4220 BSG1177A 3/10/2009 4-5.6 5040 BSG1177A 3/10/2009 4-5.6 5040 BSG1177B 2/15/2009 3-7.1 10380 BSG1177B 2/15/2009 3-7.1 10380 BSG1177C 2/24/2009 7-1.7 4220 BSG1177C 2/24/2009 7-1.7 42420 BSG1177C 2/24/2009 7-1.7 10/16/2009 BSG1177C 3/24/2009 7-1.7 10/16/2009			16	355.93	776 820	147	42	43	2.6	210	186	NM NM	186	NM	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	0.003	0.095
98G1148A 998/2008 8.81 4390 95G1148A 9/10/2009 6.45 4220 85G1148B 5/12/2009 5.56 3210 85G1177A 3/9/2009 4.56 5940 85G1177B 3/9/2009 3.56 5940 85G1177B 3/9/2009 3.57 10380 85G1177C 3/9/2008 7.25 2020 85G1177B 3/9/2008 7.27 101980 85G1177B 3/9/2008 7.27 101980			14	361.76	780	149	44	44	2.8	267 222	213 192	NM NM	174	NM NM	NM NM	<0.02	<0.005 <0.005	NM NM	<0.001	<0.01 <0.01	<0.02 <0.02	<0.02 NM	<0.005	<0.01 <0.01	NM NM	<0.03	0.003	<0.01
B8G1117A 5/1009 5.96 3210 B8G1177A 3/192008 4.56 500 B8G1177A 3/192009 4.56 5040 B8G1177B 3/192009 4.56 5040 B8G1177B 3/192008 3.58 11330 B8G1177C 3/25/2009 7.25 2020 B8G1177C 3/20008 7.25 2020 B8G1177C 3/20008 7.25 2020 B8G1177C 3/20008 7.27 10190 B8G1177A 6/26/2008 3.71 10190 B8G1177A 6/26/2008 3.71 10190 B8G1178A 6/26/2008 3.71 9940		4390	15	448.58	4560	701	304	119	5.5	2890	159	NM	332	NM	NM	0.18	<0.005	NM	0.009	<0.01	<0.02	<0.02	<0.005	3.450	0.0006	0.130	0.003	<0.01
BSG1177A 310:2008 4.54 5020 BSG1177A 319:2009 4.56 5040 BSG1177B 319:2009 3.58 11330 BSG1177B 22/52,009 3.71 10380 BSG1177C 22/24,2009 7.17 2420 BSG1177C 22/24,2009 7.17 2420 BSG1177A 62/22,008 3.71 10180 BSG1177A 62/22,008 3.71 10180			17	455.36	4530	701	335	118	6.5	2780	167	NM	307	NM	NM	0.42	<0.005	MM	0.013	<0.01	<0.02	<0.02	<0.005	5.920	NM	0.210	0.005	<0.01
B8G1177A 39/2009 4.55 5940 B8G1177B 3/102008 3.58 11330 B8G1177B 2/25/2009 3.71 10380 B8G1177C 38/2008 7.25 2020 B8G1177C 7.274/2009 7.17 2420 B8G1177A 6/26/2008 3.71 10169 B8G1179A 6/26/2008 3.71 10169 B8G1179A 9/27/2009 3.65 9640			15 14	455,77 436,37	3410 5330	426 458	310 527	65 159	5.6 9.2	2220 3650	130	NM NM	101	NM	NM NM	<0.02	<0.005	NM	0,043	<0.01	<0.02	<0.02	<0.005	24.300	NM	0.800	NM	0,650
BSG1177B 31/02/008 3.58 11330 BSG1177B 2/25/2009 3.71 10380 BSG1177C 38/02/008 7.25 2020 BSG1177C 2/24/2009 7.12 2420 BSG1179A 62/8/2008 3.71 10160 BSG1179A 6/23/2009 3.65 9840			11	444,43	5330	472	526	170	9.8	3850	175	NM NM	<5 <5	NM	NM NM	42.50 49.80	0.007	NM MM	0.260	<0.01	0.104	<0.02	0.023	42.000 351.000	0.0023 NM	2.100	0.008	6.720
BSG1177C 3/6/2008 7.25 2020 BSG1177C 2/24/2009 7.17 2420 BSG1179A 6/22/2009 3.71 10180 BSG1179A 6/22/2009 3.65 9840	3.58		14	439.97	16700	409	2180	118	9.8	13100	143	NM	<5	NM	NM	356.00	0.007	NM	1,190	<0.01	14,900	0.09	0.028	351.000 234,000	0,0076	1,880	0.009	77,000 33,300
BSG1177C 2/24/2009 7.17 2420 BSG1179A 6/26/2008 3.71 10160 BSG1179A 6/23/2009 3.65 9840			14	446.86	14700	410	1970	98	8.5	12200	148	NM	<5	NM	NM	306.00	0.016	NM	1.170	<0.01	12.000	0.25	0.006	206.000	NM	9.810	0.023	30,700
BSG1179A 6/26/2008 3.71 10160 BSG1179A 6/23/2009 3.65 9840			13	429.36	1790	336	109	49	4.7	976	114	NM	194	NM	NM	<0.02	<0.005	. NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	0.004	0.016
BSG1179A 6/23/2009 3.65 9840			14	437.28 434.93	1990 14500	359 414	114 1870	47 95	4.7 13.0	1200 10300	123 31	NM NM	207 <5	NM NM	NM NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.004	0.014
			16	443.67	13200	405	1810	93	14.0	10500	174	NM NM	<5	NM	NM NM	224.00 258.00	0.020	NM NM	0.650	0.015	3.530 6.310	0.14	0.031	195.000 199.000	0.0055 NM	6.350 5.580	0.016	21.600
		5930	18	439.87	6880	477	818	107	12.0	4640	144	NM	<5	NM	NM	57.20	0.008	NM	0.040	<0.021	0.700	0.18	0.026	45.100	0.0083	2.380	0.016	25.900 5.460
BSG1179B 6/24/2009 4.38 5430	4.38	5430	18	0.00	5840	452	675	93	10.0	4070	149	NM	<5	NM	NM	45.71	0.006	NM	0.170	<0.01	0.450	0.02	0.019	35.900	NM	1.580	0.009	4.820

		рН	Cond	Temp	DTW	TDS	Ca-T	Mg-T	Na-T	K-T	S04	CI-T	F	Alk	Ag	Acidity	AI-D	As-D	Ba-D	Cd-D	Cr-D	Cu-D	Fe-D	Pb-D	Mn-D	Hg-T	Ni-D	Se-D	Zn-D
WELL	DATE	su	uS/cm	C	Feet	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l as CaCO3	mg/l	mg/l as CaCO3	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
BSG1179C	6/26/2008	3.41	14060	17	444.70	24200	461	2680	61	10.0	18300	32	NM NM	<5 <5	NM NM	10900 6250	1030.00	0.024	NM NM	0.590	<0.01	67.330 62.800	200.00 193.00	0.007	197.000 197.000	0,0023 NM	11,900 11,860	0.019 NM	66.700 78.200
BSG1179C BSG1180A	6/23/2009 4/2/2008	3.39 6.65	13410 3540	16	451.23 410.77	22700 3610	411 648	2520 204	63 140	8.8 4.8	16200 2270	153 156	NM NM	322	NM	6250 NM	<0.02	0.027	NM NM	<0.001	0.013	<0.02	<0.02	<0.005	<0.01	0.0003	0.050	0.006	0.147
BSG1180A	2/12/2009	7.05	3990	12	418.73	3700	635	203	135	5.0	2280	167	NM	307	NM	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	0.012	NM	0.036	0.006	0.013
BSG1180B	3/31/2008	3.78	10980	13	413.18	15000	411	2320	139	11.0	11800	148	NM	<5	NM	1191	160.00	0.024	NM	0.805	0.016	1.300	0.06	0.024	181.000	0.0320	8.490	0.017	20.300
BSG1180B	4/2/2009	3.88	10340	12	421.70	13500	398	2000	129	13.0	10300	154	NM NM	<5 397	NM MM	820 NM	120.00	0.020 <0.005	NM NM	0.650	0.014 <0.01	1.170	0.03 <0.02	0.024 <0.005	160.000 36.700	NM 0.0810	6.800 1.290	NM 0,007	16.700 0.170
BSG1180C BSG1180C	3/28/2008 4/2/2009	6.47	4720 4250	13	409.18 417.81	5180 4650	569 602	534 423	108 107	2.8 5.1	3240 2790	169 187	NM NM	435	NM	NM	2.02 0.64	<0.005	NM	0.069	0.011	<0.02	NM	<0.005	24.300	NM	0.736	NM	0.089
BSG1196B	9/16/2008	6.48	5960	15	405.72	6430	462	880	115	6.9	4310	137	NM	269	NM	NM	<0.02	0.006	NM	0.006	<0.01	<0.02	<0.02	<0.005	1.310	0.0006	0.041	0.003	0.023
BSG1196B	6/9/2009	6.44	5410	15	409.27	6630	472	902	115	6.2	5210	148	NM	249	NM	NM	<0.02	<0.005	NM	0.006	<0.01	<0.02	<0.02	<0.005	1.590	NM	0.052	0.006	0.036
BSG1196C BSG1196C	9/16/2008 6/9/2009	6.60	6520 5510	17 15	404.98 408.92	7450 6690	541 572	944 750	187 197	7.6 6.6	5060 4250	160 154	NM NM	376 403	NM NM	NM NM	1.49 0.22	<0.005	NM NM	0.100	<0.01	<0.02	<0.02	<0.005 <0,005	44.800 10,500	0.0460 NM	1.760 0.430	0.008	0.390
BSG1201	1/29/2009	3,57	10400	13	NM	14800	422	4120	164	14.0	10600	158	75.2	<5	NM	2700	388.00	0.022	<0.01	0,680	<0.01	17,800	25,90	0.021	165,000	0.0071	7.890	0.016	35.600
BSG1201	6/10/2008	3.39	10070	15	NM	14400	407	1640	101	12.0	10800	160	75.3	<5	NM	2890	363.00	0.021	<0.01	0.670	<0.01	17.000	24.30	0.024	159.000	0.0082	7.580	0.015	34.600
BSG1201	7/15/2008	3.62	9960	16	NM	14800	400	1610	102	13.0	10400	160	73.1	<5	NM	5590	359.00	0.014	<0.01	0.622	<0.01	17.890	25.50	0.018	156.100	0.0065	5.920	0.021	27.000
BSG1201	12/10/2008	3.53	9560	10	NM	13600	398	1560	108	7.4	10300	168	71.5	<5	NM	2630	375.00	0.020	<0.01	0,600	<0.01	17.000	28.00	0.020	158,000 164,000	0.0060 NM	6.770	0.014	26.000 34.500
BSG1201 BSG1201	2/24/2009 4/17/2009	3.78 3.75	10090 10170	15	NM NM	13900 13500	404 407	1580 1550	101	11.0 9.1	10400 10100	158 167	72.3	<5	NM NM	2600 2530	367.00 341.00	0.030	0.011	0.650	<0.01	18,200	26.70	0.021	144,000	NM NM	7.690	0.015	33,300
BSG1201	7/22/2009	3.58	9770	19	NM	14000	443	1670	100	5.1	10600	151	71.9	<5	NM	2260	371.00	0.018	<0.01	0.610	<0.01	15.720	23.70	0.018	156.000	NM	6.680	0.020	32.100
BSG1201	11/19/2009	3.82	9530	15	NM	12800	425	1560	107	12.0	10100	161	65.9	<5	NM	2460	370.88	0.014	<0.01	0.620	<0.01	16.170	NM	0.016	160.000	NM	6.860	0.021	33.210
BSG2777A	1/29/2008	4.33	15220	11	370.18	24900	419	1740	104	11.0	18500	153	NM	<5	MM	852	117.00	0.020	<0.01	1.750	<0.01	0.205	0.25	<0.00005	454.000	0.0095	17.300 15.900	0.013	12.000 12.100
BSG2777A BSG2777A	9/2/2008	4.21	14790	15	390.00	23900	386	3800 3910	153 158	14.0	18700	149 156	NM MM	<5 <5	NM NM	1080 741	114.00 123.50	0.014	0.014 <0.01	1.710	<0.01	0.130	0.09	0.031	414.000 442.000	0.0089 NM	15.900	0.012	12.100
BSG2777A BSG2777A	4/30/2009 11/12/2009	4.41	14940	15	394.14 395.12	23700 22900	419 378	3910 3680	158	11.0	18900 21300	156	NM	<5	NM NM	952	125.00	0.026	<0.01	1.460	<0.01	0.120	0.08	<5e-005	411.000	NM NM	13,380	0.015	<0.02
BSG2777B	3/25/2008	7.05	1052	15	380,06	672	113	37	37	2.4	209	96	NM	183	NM	NM	<0.1	<0.02	0.028	<0.001	<0.01	<0.02	<0.02	<0.005	<0.00001	<0.0002	<0.03	0,002	<0.01
BSG2777B	3/25/2009	7.30	956	13	389,34	624	106	35	33	2.5	182	107	NM	185	NM	NM	<0.02	<0.005	0.030	<0.001	<0.01	<0.02	<0.02	<0,005	<0.01	NM	<0.03	0.002	<0.01
BSG2778A BSG2778A	4/4/2008	6.83	4250 4630	14	370.52 377.87	4460 5370	744 739	290	110	5.6 7.3	2840 3670	128	NM NM	286 270	NM NM	NM NM	<0.1	<0.02 <0.005	0.028	<0.001	<0.01	<0.02	<0.02 NM	<0.0005 <0.005	<0.0001	0.0052 NM	0.034 <0.03	0.004	0.018
BSG2778B	6/3/2009 4/10/2008	7.65	1171	13	362.83	812	147	541 49	131 53	4.2	380	75	NM	147	NM	NM	<0.1	<0.005	0.108	<0.001	<0.013	<0.02	<0.02	<0.0005	<0.0001	<0.0002	<0.05	0.002	<0.01
BSG2778B	6/4/2009	7.53	1236	17	369.63	896	157	53	54	4.5	446	78	NM	153	NM	NM	0.02	<0.005	0.109	<0.001	<0.01	<0.02	NM	<0.005	<0.01	NM	<0.03	0.003	<0.01
BSG2779A	5/15/2008	6.50	4420	16	416.04	4460	573	425	87	6.1	2860	176	NM	193	NM	NM	<0.02	0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	0.018	<0.0002	<0.03	0.005	0.018
BSG2779A	12/1/2008	6.70	3660	13	422.50	4410	569	421	80	4.9	2960	171 167	NM NM	196	NM NM	NM	<0.02	<0.005	NM NM	<0.001	<0.01	<0.02	<0.02	<0.005	0.029	<0.0002 NM	<0.03	0.004	0.019
BSG2779A BSG2779A	6/1/2009	6.58	4020 4220	17	400.00 425.11	4410 4260	556 513	447 418	85 75	5.8 5.6	2960 2860	161	NM	184	NM	NM	<0.02	<0.005	NM	<0.001	<0.012	<0.02	<0.02	<0.005	0.027	NM	<0.03	0.003	<0.01
BSG2779B	5/16/2008	7.00	3520	16	416.16	3410	627	189	84	5.3	2070	152	NM	258	NM	NM	<0.02	0.006	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	0.035	0.004	0.018
BSG2779B	12/2/2008	7.11	3340	13	423.50	3370	624	194	86	5.1	2210	151	NM	259	NM	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	0.004	0.022
BSG2779B	6/2/2009	7.15	3260	16	420.82	3460	637 618	202 189	94 87	5.4	2030 2140	154 159	NM NM	256 254	NM NM	NM NM	<0.02	<0.005	NM NM	<0.001	0.012 <0.01	<0.02	<0.02 NM	<0.005	<0.01 <0.01	NM NM	<0.03	0.004	<0.01 <0.01
BSG2779B BSG2779C	11/3/2009 5/15/2008	7.16 7.28	3210 708	15 16	425.82 421.64	3380 442	618	189 25	28	2.6	60	94	NM	157	NM	NM NM	<0.02	<0.005	NM NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	<0.002	<0.01
BSG2779C	12/1/2008	7.61	685	13	429.57	402	66	25	27	2.4	59	94	NM	160	NM	NM	<0.02	0.006	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	<0.002	<0.01
BSG2779C	6/1/2009	7.30	680	17	430.00	432	69	27	29	2.5	59	91	NM	157	NM MM	NM	<0.02	<0.005	NM NM	<0.001	0.011	<0.02	<0.02 NM	<0.005 <0.005	<0.01	NM NM	<0.03 <0.03	<0.002	<0.01
BSG2779C BSG2782A	11/3/2009 2/15/2008	7,57	703 19250	15	431,53	416 37600	64 435	25 4000	28 74	2.6 26.0	59 28700	98 167	NM 193.0	156 <5	NM	NM 11742	<0.02 1530.00	0.005	NM NM	<0.001	0.029	29.600	0.92	0.070	501.000	0.0096	22,600	NM	141.000
BSG2782A	6/12/2008	3.18	17990	14	418.74	34200	450	3700	66	25.0	25700	166	196.0	<5	NM	12100	1440.00	0.072	NM	1.620	0.018	28.800	0.79	0.069	444.000	0.0094	20.300	0.047	135.000
BSG2782A	9/3/2008	3.61	13390	15	420.22	22400	469	2460	70	20.0	18600	155	137,0	<5	NM	6360	890.00	0.038	NM	0.950	<0.01	23,500	0.38	0.050	336,000	0.0095	13.230	0.026	84,600
BSG2782A	12/3/2008	3.68	12690	12	418.15	20700	519	2340	69 74	16.0	19700	150	331.0 194.0	<5	NM	5960 9550	820.00 NM	0.005 NM	NM NM	<0.001 NM	0.010 NM	<0.02 NM	0.39 NM	<0.005 NM	<0.01 NM	0.0010 NM	<0.03 NM	0.027	0.023 NM
BSG2782A BSG2782A	5/22/2009 11/24/2009	3.50 3.65	16920 17880	16 13	419.18 432.63	32800 31000	449 391	3630 3240	65	24.0	27000	159 170	174.0	<5 <5	NM	8280	1540.00	0.041	NM	1,230	0.022	53.600	0.06	0.068	420,000	NM	17,800	0.052	119,000
BSG2782B	2/18/2008	4.23	8630	13	407.82	10700	431	1530	123	12.0	7750	150	36.7	<5	NM	480	67.80	0.014	NM	0.680	<0.01	0.120	0.09	0.023	128.000	0.0140	5.040	0.021	8.630
BSG2782B	6/13/2008	3.90	7230	16	413.13	8750	427	1190	100	9.1	6560	136	26,3	<5	NM	425	42.60	0.014	NM	0.570	<0.01	0.089	0.03	0.026	92.100	0.0090	3.910	0.011	6.040
BSG2782B	8/28/2008	4.22	7120 6880	16 12	416.21	8640	453 428	1210	111 96	14.0	6230	131	24.8 36.8	-5	NM	405 488	44.30 62.70	0.013	NM NM	0.620	<0.01	0.067	0.03	0.028	106,000 114,000	0.0054	3.740 4.040	0.010	5.890 6.250
BSG2782B BSG2782B	12/4/2008 5/22/2009	4.21 4.26	6520	16	12.00 419.00	8460 7510	428	1130 937	98	11.0	6850 5590	121	28.5	<5	NM	383	48.10	0.010	NM	0.550	<0.01	0.067	<0.02	0.022	93.200	NM	2.960	0.011	4.650
BSG2782B	11/20/2009	3.99	5770	13	423,62	6750	481	890	94	12.0	4320	116	23.0	<5	NM	255	36.90	0.009	NM	0.470	<0.01	0.071	0.03	0.020	71.800	NM	2.540	0.012	4.280
BSG2782C	2/15/2008	3.69	18880	13	409.31	33300	432	4640	116	18.0	27500	164	259.0	<5	NM	6091 6690	716.00 418.00	0.064	NM NM	2.120	0.022 <0.01	2.500 1.900	0.46	0.027	655.000 667.000	0.0220	29.500 29.900	NM 0.044	76.700 50.200
BSG2782C BSG2782C	6/12/2008 9/3/2008	3.65 3.88	19020 18840	14	422.41 426.30	33000 31200	422 437	4720 4730	135 160	18.0 22.0	26700 28300	160 154	224.0	<5	NM	5400	418.00 550.00	0.053	NM	2.250	<0.01	3.800	0.23	0.021	793,000	0.0240	30,920	0.038	62,100
BSG2782C BSG2782C	12/3/2008	3.78	18390	12	425.05	33200	443	4870	137	21.0	30900	157	234.0	<5	NM	8140	741.00	0.038	NM	0.760	0.023	11,430	0.28	0.049	725.000	0.0017	28.040	0.050	64.200
BSG2782C	5/19/2009	3.75	17880	16	425,85	33200	444	4830	135	19.0	25800	165	226.0	<5	NM	5010	655.00	0.052	NM	2.260	0.025	12,200	0,50	0.028	661,000	NM	29.700	0.058	70.700
BSG2782C	11/24/2009	3,93	19510	13	432,80	30700	401	4550	144	20.0	24100	168	198.0	<5	NM	3400	595.00	0.032	NM	2,430	0.013	7.010	0.28	0.026	670,000	NM <0.0002	28.100 <0.03	0.060	56.400 <0.01
BSG2783A BSG2783A	5/13/2008	7.15 7.16	1845 2070	14	360,02 371,27	1350 1630	232 305	67 81	54 52	3.8 4.2	550 886	184 196	0.1	168 NM	NM	NM NM	<0.02	<0.005	NM NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	0.003	0.016
BSG2783A BSG2783A	5/28/2009	7.10	1948	17	371.08	1530	279	77	54	4.2	613	218	0.1	169	NM	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.003	<0.01
BSG2783A	11/11/2009	7.20	1935	15	373.81	1440	264	72	49	4.5	640	214	0.1	172	NM	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.003	<0.01
BSG2783B	5/14/2008	3.68	14230	16	364.02	21800	439	3100	100	17.0	17300	161	157.0	<5	NM	NM	386.84	0.049	NM	1.480	0.010	0.277	0.46	0.036	383.000 357.000	0.0066	16.900	0.064	45.000 32.500
BSG2783B BSG2783B	12/11/2008 5/28/2009	3.86	13350 12600	13	374.24 373.53	20200 19500	420 439	2850 2890	98 107	16.0 19.0	16300 15000	158 176	136.0 124.0	<5 <5	NM NM	NM NM	363.00 311.00	0.039	NM NM	1.270	0.014	0.300	0.30	0.038	357.000	0.0089 NM	14.600	0.046	39.020
BSG2783B BSG2783B	11/11/2009	3.85	12620	16	376,34	18100	410	2630	96	18.0	13600	177	107.0	<5	NM	NM	307.00	0.034	NM	1.190	0.010	0.250	<0.02	0.032	322.000	NM	12.550	0,048	36.800
BSG2783C	5/13/2008	7.27	1410	14	359.48	986	175	54	45	3.2	429	105	0,2	207	NM	NM	<0.02	0.006	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	0,003	<0.01
BSG2783C	12/9/2008	7.45	1209	12	370.23	852	154	46	37	2.8	384	101	0.2	NM	NM	NM	<0.02	0.006	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002 NM	<0.03 <0.03	<0.002 <0.002	0.015
BSG2783C BSG2783C	5/29/2009 11/10/2009	7,38	1181	17	369.88 372.57	882 750	159 137	47	39 35	2.9	308 290	110 107	0.2	200	NM NM	NM NM	0.04	<0.005	NM NM	<0.001	0.011	<0.02	<0.02	<0,005	0.025 <0.01	NM NM	<0.03	<0.002	<0.01
BSG2784	3/18/2008	3.52	9750	14	NM	14000	448	1680	62	6.5	11600	158	89.4	<5	NM	2816	433.00	0.021	<0.01	0.710	<0.01	13.100	1.00	0.038	191.000	0.0042	8.620	0.010	43.000
BSG2784	6/10/2008	3.35	10670	14	NM	16000	430	1820	68	13.0	10800	166	103.0	<5	NM	3350	451.00	0.027	<0.01	0.880	<0.01	11.700	1.07	0.038	218.000	0.0039	9.790	0.020	46.000
			-			-	•	1 7	120	•	•	-				100000													

		рН	Cond	Temp	DTW	TDS	Ca-T	Mg-T	Na-T	K-T	S04	CI-T	F	Alk	Ag	Acidity	AI-D	As-D	Ba-D	Cd-D	Cr-D	Cu-D	Fe-D	Pb-D	Mn-D	Hg-T	Ni-D	Se-D	Zn-D
WELL	DATE	su	uS/cm	C	Feet	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l as CaCO3	mg/l	mg/l as CaCO3	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
BSG2784	9/26/2008	3.75	11060	14	NM	16300	403	1970	72	9.6	11700	162	99.0	<5	NM	NM	433.00	0.023	<0.01	0.820	<0.01	13.600	1.30	0.030	262,000	0,0087	10,400	0.036	43.700 31,400
BSG2784 BSG2784	12/10/2008 4/17/2009	3.79	10960 10830	13	0.00	17000 15800	415 453	2110 1960	83 74	8.2 10.0	14700 11600	160 183	102.0 96.5	<5 <5	NM	2900 2860	437.00 394.00	0.031	<0.01	0.880	0.010 <0.01	12.370 12.830	1.39	0.032	259,000 217,000	0.0090 NM	9.920 10.230	0.021	38,300
BSG2784	11/19/2009	3.80	10060	14	0.00	14200	440	1650	68	12.0	11500	174	87.2	<5	NM	2910	440.42	0.020	<0.01	0.770	< 0.01	12.800	NM	0.030	217.000	NM	8.600	0.028	40.200
COG1149A	1/18/2008	7.17	1389	11	128.63	812	157	50	32	3.5	19	334	NM	157	NM	NM	NM	<0.005	0.193	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
COG1149A	5/12/2008	7.12	1379	13	128.27	902	141	47 49	30	3,3	27	322	NM	155 154	NM	NM NM	NM	<0.005	0.204	<0.001	<0.01	0.031 <0.02	<0.02 <0.02	<0,005 <0,005	0.029 <0.01	NM	<0.03 <0.03	<0.002	0.023
COG1149A COG1149A	8/4/2008 11/3/2008	7.00 7.35	1353	14	128.57 128.63	876 808	153 154	49	30 29	3.4	27	327 317	NM NM	157	NM	NM	NM NM	<0.005 <0.005	0.197	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
COG1149A	3/11/2009	7.18	1354	12	129.06	820	151	48	29	3.5	26	345	NM	153	NM	NM	NM	<0.005	0.190	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0,002	<0.01
COG1149A	5/5/2009	7.24	1294	12	128.95	810	142	46	29	3.4	25	337	NM	154	NM	NM	NM	<0.005	0.210	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	NM	<0.01
COG1149A	8/3/2009	6.96	902	16	121.98	902	156	48	30	3.5	25	344	NM	154	NM NM	NM NM	NM MM	<0.005	0,200	<0,001	<0.01	<0.02	<0.02 <0.02	<0.005 <0.005	<0.01	NM NM	<0.03 <0.03	<0.002 NM	<0.01 <0.01
COG1149A COG1149B	11/6/2009	7.26 7.38	1346 824	14	129.18 150.92	834 492	139 86	45 31	27 15	3.4 4.6	25 7	353 153	NM NM	153 164	NM	NM	NM	0.007	0.210	<0,001	<0.01 0.013	<0.02	<0.02	<0.005	<0.01 <0.01	NM	<0.03	0.002	<0.01
COG1149B	5/12/2008	7.32	815	13	150.77	540	79	32	16	4.7	11	150	NM	162	NM	NM	NM	0.007	0.279	<0.001	0.010	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.002	<0.01
COG1149B	8/4/2008	7.16	818	14	151.43	520	83	33	16	5.0	11	155	NM	186	NM	NM	NM	0.008	0.274	<0.001	0.012	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.002	0.057
COG1149B	11/3/2008	7.52	806	12	151.51	536	91	33	16	4.8	9	151	NM	164	NM	NM	NM	0.006	0.284	<0,001	0.011	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.002	<0.01
COG1149B	3/11/2009 5/5/2009	7.47	813 794	13	152.40 154.44	464 512	88 86	32 31	15 15	4.8	11	160 161	NM NM	163 165	NM NM	NM NM	NM NM	0.006	0.260	<0,001 <0,001	<0.01 0.014	<0.02 <0.02	<0.02 <0.02	<0.005	<0.01 <0.01	NM NM	<0.03 <0.03	0.003 NM	<0.01 <0.01
COG1149B COG1149B	8/3/2009	7.50 7.30	829	14	152.95	512	92	33	16	5.0	10	160	NM	161	NM	NM	NM	0.006	0.290	<0.001	0.014	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0,002	<0.01
COG1149B	11/6/2009	7.58	808	14	153.20	524	80	31	15	4.7	10	168	NM	163	NM	NM	NM	0.006	0.290	<0.001	0.011	<0.02	<0.02	<0.005	<0.01	NM	<0.03	NM	<0.01
COG1152A	3/24/2008	5.47	4750	16	209.52	4760	540	444	204	5.8	2730	555	NM	97	NM	NM	<0.02	<0.005	NM	0.013	<0.01	<0.02	<0.02	<0.005	19.200	0.0003 NM	0.302	0.006	0.039
COG1152A COG1172	12/11/2009 5/19/2008	5.72 7.22	5320 666	12	208.00 69.64	4760 378	550 64	446 30	216 25	6.8	2810 67	598 38	NM NM	102 239	NM MN	NM NM	<0.02 NM	<0,005	NM 0.057	0.013 <0.001	<0.01 <0.01	<0.02 0.035	<0.02 NM	<0.005 <0.005	20,200 NM	NM NM	0,330 NM	<0.009	0.030 <0.01
COG1172	8/5/2009	7.77	647	13	69.64	364	66	32	25	1.1	64	33	NM	235	NM	NM	NM	0.005	0.054	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	NM	<0.01
COG1175A	8/27/2008	3.94	3940	15	404.53	4030	536	267	72	5.5	2400	325	NM	<5	NM	NM	31.60	0.006	NM	0.063	<0.01	3.440	0.02	0.009	7.590	0.0004	0.170	0.004	3.090
COG1175B	8/27/2008	3.78	6510	15	405.11	7880	428	892	90	14.0	5400	170	NM	<5	NM	NM	83.20	0.015	NM	0.550	0.012	9.750	0.09	0.027	139.000 NM	0.0019 NM	6.040	0.008	24.300
COG1175B COG1178A	8/26/2009 1/2/2008	3.93 7.23	6830 2120	18	410.67 348.10	7420 1640	437 273	878 86	88 71	6.9 4.3	4880 284	183 494	NM 0.1	<5 147	NM NM	NM NM	NM <0.02	0.014 <0,005	NM 0.034	0.540 <0.001	NM <0.01	9,380	NM <0.02	0.026 <0.005	<0.01	<0.0002	NM <0.03	0.002	<0.01
COG1178A	7/24/2008	6.99	2270	17	351.66	1730	275	89	71	4.3	284	522	0.1	145	NM	NM	<0.02	0.006	0.035	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	0.0004	<0.03	0.004	0.034
COG1178A	7/13/2009	7.00	2210	19	303.97	1580	258	81	67	4.2	306	496	0.1	144	NM	NM	<0.02	<0.005	0.034	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.005	<0.01
COG1178B	3/27/2009	7.23	2270	13	355.20	1630	267	87	70	4.4	311	517	NM	151	NM	NM	<0.02	<0,005	0.036	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.005	<0.01
COG1204A COG1204A	6/10/2008	7,08 7,45	670 686	11	774.94 773.16	372 366	56 57	26 28	41 43	1.5	36 36	67 60	NM NM	226 232	NM MN	NM NM	<0.1 <0.02	<0.005 <0.005	0.202	<0.001	<0.01	<0.02	<0.02 <0.02	<0.005 <0.005	<0.00001	NM NM	<0.03	<0.002 <0.002	<0.01
COG1204A	5/26/2009	7.44	665	15	773,16	412	56	27	41	1.4	34	61	NM	227	NM	NM	<0.1	<0.005	0.190	<0.001	<0.01	<0.02	<0.02	<0.005	<1e-005	NM	<0.03	<0.002	<0.01
COG1204A	10/21/2009	7.60	659	12	772.26	372	55	28	45	1.4	25	66	NM	230	NM	NM	<0.02	<0.005	0.210	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
COG1204B	6/11/2008	7.09	732	11	774.48	420	69	34	29	1.5	99	44	NM	227	NM	NM	<0.02	0.005	0.130	<0.001	<0.01	<0.02	<0.02	<0.005	<0.00001	NM	<0.03	0.002	0.018
COG1204B	10/21/2008	7.42	728	11	773.56	444	<1	<1	<1	<0.5	104	39	NM NM	228	NM MM	NM MM	<0.02	<0.005	0.110	<0.001	<0.01	<0.02	<0.02 <0.02	<0.005	<0.00001	NM MM	<0.03	0.002	0.016
COG1204B COG1204B	5/27/2009 8/12/2009	7.47	730 752	15 20	773.47 771.92	462 434	75 74	35 36	29 32	1.4	115 123	41	NM NM	224	NM NM	NM	<0.02 <0.01	0.006	0.100	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	NM	0.013
COG1204B	9/30/2009	7.41	741	10	772.33	456	73	35	30	2.0	125	39	NM	227	NM	NM	<0.02	<0.005	0.098	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	< 0.03	0.002	0.018
COG1204B	10/22/2009	7.52	743	12	771.98 87.40	464	73 594	36 294	32 82	1.3 5.3	128 2190	41 85	NM NM	228 515	NM NM	NM NM	<0.02 NM	<0.005 <0.005	0.100	<0.001 0.001	<0.01	<0.02 <0.02	<0.02 NM	<0.005 <0.005	<0.01 NM	NM NM	<0.03 NM	0.002	0.015 2.640
ECG1100A ECG1100A	3/5/2008 5/6/2008	6.16 6.30	4080 3950	14 15	87.42	3700 3650	616	299	81	5.4	2180	88	NM	512	NM	NM	NM	<0.005	0.022	<0.001	<0.01	0.031	NM	<0.005	NM	NM	NM	0.004	2.490
ECG1100A	7/8/2008	6.33	4040	16	87,47	3720	586	291	77	5.0	2330	90	NM	517	NM	NM	NM	0.006	0.021	0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.004	2.480
ECG1100A	10/3/2008	6.37	4050	15	86.70	3680	574	262	72	4.5	2370	89	NM	532	NM	NM	NM	0.011	0.019	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.005	2.390
ECG1100A ECG1100A	4/16/2009	6.48	4160 4430	13	87.25 86.15	3910 4140	632 691	316 338	83 79	5.6 5.6	2430 2620	93 95	NM NM	568 549	NM MM	NM NM	NM MM	0.005 <0.005	0.021	<0.001 <0.001	<0.01 <0.01	<0.02	NM NM	<0.005	NM NM	NM NM	NM NM	0.004	2.590
ECG1100A ECG1100B	11/12/2009 3/5/2008	7.42	580	13	80.70	308	56	23	20	1.5	67	37	NM	155	NM	NM	NM	<0.005	0.051	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002	<0.01
ECG1100B	5/6/2008	7.56	560	15	80.75	306	57	24	20	1.3	77	41	NM	158	NM	NM	NM	<0.005	0.050	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002	<0.01
ECG1100B	7/8/2008	7.57	573	16	81.26	334	58	24	19	1.1	70	39	NM	154	NM	NM	NM	<0.005	0.052	<0.001	<0.01	<0.02	NM NM	<0.005	NM	NM NM	NM	<0.002	<0.01
ECG1100B ECG1100B	10/3/2008 4/16/2009	7.60	565 550	16 15	80.87 81.42	312 306	52 54	22	18	1.1	71 65	38	NM NM	156 159	NM NM	NM NM	NM NM	<0.005	0.048	<0.001	<0.01	<0.02	NM	<0.005	NM NM	NM	NM	<0.002 <0.002	<0.01
ECG1100B	11/12/2009	7.72	562	15	79.65	296	53	22	18	1.3	69	38	NM	158	NM	NM	NM	<0.005	0.048	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002	<0.01
ECG1112A	6/19/2008	6.39	980	16	155.42	620	87	38	34	3.3	204	110	NM	116	NM	NM	NM	<0.005	0.073	0.003	<0.01	0.590	NM	<0.005	NM	NM	NM	0.002	0.560
ECG1113A	8/7/2008	6.79	2340	16	94.36	2100	411	95	67	5.2	1100	180	NM NM	293	NM	NM NM	<0.02	<0.005	NM NM	<0.001	<0.01	<0.02	<0.02 NM	<0.005	<0.01	NM NM	<0.03	<0.002 0.002	0.032 <0.01
ECG1113A ECG1114A	11/4/2009 9/12/2008	7.20	2370 1018	15	96.37 43.38	2020 636	401 78	91	63	6.1 13.0	1100 41	186 190	NM NM	286 172	NM NM	NM NM	<0.02 NM	<0.005 0.005	0.238	<0.001	<0.01 <0.01	<0.02	0.03	<0.005	0.033	<0.0002	<0.03	<0.002	<0.01
ECG1114A	10/5/2009	7.48	1015	16	45.45	674	77	31	58	13.0	42	202	NM	168	NM	NM	NM	<0.005	0.230	<0.001	<0.01	<0.02	<0.02	<0.005	< 0.01	NM	<0.03	<0.002	<0.01
ECG1114B	9/12/2008	7.40	441	17	390.00	256	43	15	14	3.1	28	44	NM	118	NM	NM	NM	0.011	0.220	<0.001	<0.01	<0.02	0.02	<0.005	0.012	<0.0002	<0.03	<0.002	<0.01
ECG1114B	9/29/2009	7.63	435	18	390.18	234	44	15	13 60	2.4	25 33600	44 186	NM	119	NM	NM	NM	0.010	0.221 NM	<0.001	<0.01 0.052	<0.02	0.03 573.00	<0.005	0.010 278.000	NM 0.0012	<0.03 21.500	<0.002	<0.01
ECG1115A ECG1115A	2/19/2008	3.28	19300	14	417.53	43100 38400	461 462	4520 3970	60	8.3 6.8	33600 28700	186	NM NM	<5	NM	NM NM	1910.00 1950.00	0.054	NM	0.650	0.052	116.000	514.00	<0.005	255.000	0.0012 NM	18.300	0,026	124.000
ECG1115A ECG1115B	2/19/2008	4.37	20600	14	419.27	38400	423	5880	140	17.0	30400	161	NM	<5	NM	NM	263.00	0.027	NM	0.870	0.014	0.155	0.11	0.006	856.000	0.0420	38.840	0.026	11.200
ECG1115B	2/2/2009	4.29	21800	14	0.00	37900	443	6050	136	19.0	29100	162	NM	<5	NM	NM	372.00	0.040	NM	1.310	<0.01	0.120	0.29	0.005	926.000	NM	42.300	0.053	19.600
ECG1115C	2/22/2008	3,38	22600	14	421.53	46800	461	5480	94	36.0	36900	167	NM	<5	NM	NM NM	1440.00	0.109	NM NM	1.740	0.029	89.800 96.100	0.75	0.019	1020.000	0.0160 NM	39.200 40.800	0.059	181,000
ECG1115C ECG1115D	2/3/2009	3.46 7.76	24000 605	14	437.33 411.57	47200 30000	479 53	6190 20	95 33	38.0 7.0	41700 48	172 75	NM NM	<5 148	NM NM	NM NM	1680,00	0,070	NM NM	<0.001	0.018	96.100	<0.02	<0.021	<0.01	NM NM	40.800 <0.03	0.089	<0,01
ECG1115D ECG1116B	4/10/2008	7.76	3480	13	392.57	3150	620	170	83	20.0	1800	237	NM	209	NM	NM	<0.02	<0.005	0.036	<0.001	<0.012	<0.015	<0.02	<0.005	<0.0001	<0.0002	NM	0.003	<0.02
ECG1116B	6/15/2009	7.08	3190	15	393.35	3170	613	164	80	20.0	1910	261	NM	209	NM	NM	<0.02	<0.005	0.031	<0.001	0.011	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	0.024
ECG1117A	7/9/2008	3.21	9940	18	408.70	14500	418	1700	107	3.5	9980	161	NM	<5	NM	7220	344.00	0.013	NM	0.624	0.019	17.810	44.10	<0.005	233.000	0.0190	8.810	0.013	28.900
ECG1117A	8/31/2009	3.67	9430	18	403.06	12200	430	1470	116 77	<0.5 9.6	9120	179	NM NM	<5 467	NM NM	2090 NM	284.00	<0.005	NM NM	<0.001	0.013	0.021	40.10 <0.02	<0.005	193.000 0.016	NM 0.0260	6.580 0.032	0.014	26.500 0.049
ECG1117B ECG1117B	7/9/2008 8/10/2009	6.74 7.06	4320 4240	17	400.58 399.57	4360 4350	797	273	80	9.6	2620 2670	154 156	NM NM	467	NM	NM	0.02	<0.005	NM	<0.001	<0.01	<0.021	<0.02	<0.005	0.016	0.0260 NM	0.032	NM	0.049
ECG1118A	3/3/2008	3.42	9530	13	410.48	2810	411	1420	106	6.7	9730	183	NM	NM	NM	2928	503.00	0.015	NM	0.558	<0.01	33.170	71.20	<0.005	209.000	0.0025	8.910	0.015	49.800
				1000	1			The Let	MATERIAL STATES	-			The state of the s	-		1000			100		1 1/1 1/2	A 24 1 2 7	CAN THE REAL PROPERTY.	100				16	12.50

WELL	DATE	pH su	Cond uS/cm	Temp C	DTW Feet	TDS mg/l	Ca-T mg/l	Mg-T mg/l	Na-T mg/l	K-T mg/l	SO4 mg/l	CI-T mg/l	F mg/l	Alk mg/l as CaCO3	Ag mg/l	Acidity mg/l as CaCO3	AI-D mg/l	As-D mg/l	Ba-D mg/l	Cd-D mg/l	Cr-D mg/l	Cu-D mg/l	Fe-D mg/l	Pb-D mg/l	Mn-D mg/l	Hg-T mg/l	Ni-D mg/l	Se-D mg/l	Zn-D mg/l
ECG1118A	2/24/2009	3.46	9510	14	417.95	12700	427	1360	105	6.9	9050	177	NM	<5	NM	NM	422.00	0.018	NM	0.530	<0.01	26.200	59.20	<0.005	163.000	NM	7.230	0.014	40.400
CG1118B	3/3/2008	7.33	1847	13	404.62	1470	251	86	53	9.0	850	72	NM	146	NM	NM	0.17	<0.005	NM	<0.001	<0.01	0.022	<0.02	<0.005	0.037	<0.0002	<0.03	0.003	0.018
CG1118B	2/24/2009	7.28	2050	14	410.38 428.52	1640 17100	276 419	90 1970	53 121	9.0	1020 12500	76 187	NM NM	153 <5	NM MN	NM 3680	0.02 525.00	<0.005 0.022	NM NM	<0.001 0.840	<0.01 <0.01	<0.02 32.900	<0.02 23.20	<0.005 <0.005	<0.01 272.000	NM 0.0052	<0.03 11.200	0.003	<0.01
CG1121A CG1121A	6/17/2008 8/6/2009	3.34	11200 11180	18	428.52	16500	419	1840	118	9.4	12300	206	NM NM	<5	NM	2570	494.00	0.022	NM	0.820	<0.01	28.400	19.00	<0.005	255.000	0.0052 NM	9.970	NM	4.500
CG1121A	8/5/2009	7.02	4180	18	437.13	4210	782	256	102	8.9	2590	161	NM	311	NM	NM	<0.02	<0.005	NM	<0.020	<0.01	<0.02	<0.02	<0.005	0,032	NM	<0.03	NM	<0.01
CG1124B	2/26/2008	5.82	2300	14	366,98	2100	226	196	49	6.8	1480	49	NM	43	NM	NM	1.71	<0.005	NM	0.025	<0.01	0.600	1,31	<0.005	13.820	0.0014	0.650	0.040	2,134
CG1124B	6/12/2009	6.62	918	17	397.25	614	84	43	37	4.5	403	43	NM	73	NM	NM	0.06	<0.005	NM	0.002	0.029	0.020	<0.02	<0.005	2.090	NM	0.076	0,020	0.160
CG1124C	2/25/2008	7.53	506	14	360.30	296	41	12	37	4.4	88	42	NM	91	NM	NM	<0.02	<0.005	NM	<0,001	0.038	<0.02	<0.02	<0.005	0.011	<0.0002	<0.03	0.018	<0.01
CG1124C	6/15/2009	7,82	497	15	376.04	280	41	12	35	4.0	89	39	NM	93	NM NM	NM NM	<0.02	<0,005	NM NM	<0,001 0,760	0.043 <0.01	<0.02 3.960	<0.02 0.03	<0.005	<0.01 144.000	NM 0.0039	<0.03 5.390	0.015	<0.01
CG1128A CG1128A	10/24/2008	3.86 4.00	6400 8010	13	358.48 326.43	7900 9660	144	49 1070	822 76	25.0 13.0	5210 6310	227 234	NM NM	<5	NM	NM	157.21	0.012	NM	1.010	<0.01	3,500	0.09	0.054	163,780	NM	6,270	0.018	36,990
CG1128B	10/24/2008	7.30	855	13	347.72	514	431	882	80	11.0	106	119	NM	154	NM	NM	<0.1	<0.005	NM	0.031	0.180	0.180	<0.02	<0.005	<0.00001	<0.0002	0.300	0.002	1.210
CG1128B	11/9/2009	7.60	904	13	321.69	484	84	30	28	3.5	105	125	NM	157	NM	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	0.013	NM	<0.03	0.003	<0.01
CG1131A	6/23/2009	6.89	4080	15	316.92	3240	625	189	85	5.3	1460	557	NM	214	NM	NM	<0.02	<0,005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.003	0.012
CG1144A	7/7/2008	3.43	7940	16	408.17	10700	462	1160	82	4.1	7120	174	NM	<5	NM	NM	NM	0.012	NM	NM	<0.01	NM	41.85	<0.005	NM	0.0005 NM	NM 4,060	0.012	NM 26,500
CG1144A	7/29/2009	3,33	7700 6640	18	418.53	9790 8180	473 409	1070	87 39	3.8 9.1	6530 5490	177 91	NM NM	<5 <5	NM NM	NM NM	314.00 NM	0.010	NM NM	0.240 NM	<0.01 <0.01	20.130 NM	40.30 1.41	<0.005	85.400 NM	0.0075	4.060 NM	0.012	26,500 NM
CG1144B CG1144B	7/7/2008 7/29/2009	4.18 4.03	7960	18	378.17 371.64	9950	443	1290	51	11.0	7050	91	NM NM	<5	NM	NM	184.00	0.006	NM	0.470	<0.01	20,870	0.94	0.009	243,000	NM	8,550	0.012	31,500
CG1145A	11/18/2008	3.80	8240	13	387.49	11100	421	1290	84	12.0	9180	181	NM	<5	NM	1680	236.00	0.010	NM	1.040	<0.01	21,200	0.12	0.068	246,000	0.0055	9.590	0.013	53,300
CG1145A	12/14/2009	3.85	8060	13	377.90	10200	406	1170	79	10,0	7190	205	NM	<5	NM	1810	206.00	0.008	NM	1,030	<0.01	18,300	0.16	0.055	213.000	NM	7,860	0.016	45,700
CG1145B	11/21/2008	6.07	5290	12	381,63	6390	504	808	82	11.0	4220	148	NM	282	NM	130	7.21	<0.005	NM	0.100	<0.01	0.350	0.05	<0,005	86,300	0.0045	2.050	0.007	3.910
CG1145B	12/15/2009	5.97 7.01	5240	12	372.42 379.57	5660	489 585	661 206	84 58	10.0 8.3	3370 2090	153 134	NM NM	337 364	NM NM	106 NM	3.72 <0.02	<0.005 <0.005	NM NM	0.076 <0.001	<0,01 <0.01	0.167 <0.02	0.06 <0.02	<0.005 <0.005	67,600 <0,01	NM 0.0049	1.490	0.008	<0.01
CG1145C CG1145C	11/18/2008	7.01 6.93	3300 3360	13	379.57 370.21	3190 3060	585 529	206 188	58	8.3	1810	134	NM NM	364	NM	NM NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.005	<0.01
CG1146	3/18/2008	3.38	14310	15	NM	26600	425	2910	61	4.5	20100	168	145.0	<5	NM	7819	1080.00	0.032	<0.01	0.720	<0.01	76.200	213.00	<0.005	288.000	0.0058	15.400	0.016	85.300
CG1146	6/10/2008	3.19	14760	15	NM	26100	414	2700	74	13.0	18100	184	140.0	<5	NM	7180	918.00	0.035	<0.01	0.800	<0.01	62,100	167.00	<0.005	291.000	0.0089	14.700	0.025	82,400
CG1146	7/18/2008	3.38	14800	17	NM	25200	410	2690	74	11.0	17900	180	135.0	<5	NM	8716	914.00	0.041	<0.01	0.783	<0.01	58.720	166,00	<0.005	294.000	0.0077	13,580	0.037	75.960
CG1146	12/10/2008	3.55	14380	14	NM	25600	399	2830	80	8.8	21300	168	149.0	<5	NM	7150	1030.00	0.045	<0.01	0.780	0.012	67.100	177.00	<0.005	360.000	0.0082	16.600	0.032	73.800
CG1146	2/17/2009	3.51	14410	16	264.00	24600	421	2680	74	8.2	18900	196	137.0	<5	NM	6220	940.80	0.041	<0.01	0.810	0.010	54.070	153.00	<0.005	317.000	NM	10.300	0.028	80.600
CG1146	5/12/2009	3,58	14690	16	407.80	24300	440	2870	80	9.6	18200	175 172	142.0	<5 <5	NM MM	5810 5280	942.00 812.00	0.040	<0.01	0.760 0.810	<0.01 <0.01	60.200 57.480	152.00 117.50	<0.005	316,000 303.000	NM NM	14.000 12.750	0.033	78.100 70.500
CG1146	9/1/2009	3.40 3.63	14230 15130	17	264.00 264.00	22700 26300	421 426	2520 2690	89 80	11.0	17200 18500	186	134.0	<5	NM NM	6690	936.00	0.031	<0.01	0.790	<0.01	58.530	NM	<0.005	307,000	NM	14.270	0.035	79,000
CG1182A	9/5/2008	8.03	572	15	49.10	432	22	8.7	135	2.7	70	84	NM	197	NM	NM	0.02	<0.005	NM	<0.001	<0.01	<0.02	0,07	<0.005	0.047	0.0064	<0.03	<0.002	0.011
CG1182A	8/14/2009	8.10	953	19	51.16	504	31	12	132	2.8	79	108	NM	212	NM	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	0.033	NM	<0.03	<0.002	<0.01
CG1182B	9/5/2008	7.20	737	22	45.25	580	98	44	40	3.4	113	116	NM	240	NM	NM	<0.02	0.010	NM	<0.001	<0.01	<0.02	0.74	<0.005	0.050	<0.0002	<0.03	<0.002 <0.002	<0.01
CG1182B	8/14/2009	7.21	1087	21	44.47	632	97	41	38	7.7	110	128 746	NM NM	239	NM NM	NM NM	<0.02 NM	0.007 <0.005	NM NM	<0.001	<0.01 NM	<0.02	0.53 NM	<0.005	0.038 NM	NM NM	<0.03 NM	<0.002	<0.01
CG1183A CG1183A	6/17/2008	6.77	361 3240	16	43.70 45.46	2750 2820	467	127	195 176	7.1	732 620	748	NM	296 289	NM	NM	NM	0.005	NM	<0.001	NM	<0.02	NM	<0.005	NM	NM	NM	0.132	0.033
CG1183A	5/29/2009	6,86	3560	16	43.31	2780	444	115	177	7.5	641	804	NM	293	NM	NM	NM	0.006	NM	<0.001	NM	<0.02	NM	<0.005	NM	NM	NM	0.004	<0.01
CG1183A	11/24/2009	6.80	4082	14	45.40	2550	388	105	158	7.8	571	812	NM	286	NM	NM	NM	0.005	NM	<0.001	NM	<0.02	NM	<0.005	NM	NM	NM	0.004	<0.01
CG1183B	6/17/2008	7.05	218	17	33.70	1460	221	80	93	9.1	148	537	NM	181	NM	NM	NM	<0.005	NM	<0.001	NM	<0.02	NM	<0.005	NM	NM	NM	0.002	<0.01
CG1183B	11/13/2008	7.19	2110	13	34.90	1370	215	77	97	8.8	161	535	NM	184	NM	NM	NM	<0.005	NM	<0.001	NM NM	<0.02	NM NM	<0.005	NM NM	NM	NM	0.004	<0.01
CG1183B	5/29/2009	7.08	2200 2540	17	33.55 35.06	1460 1440	215 195	73	90 87	9.8	142	563 539	NM NM	184 182	NM NM	NM NM	NM NM	<0.005	NM NM	<0.001 <0.001	NM NM	<0.02	NM NM	<0.005	NM NM	NM NM	NM NM	0.003	<0.01
CG1183B CG1184	11/24/2009 2/29/2008	7.15 6.99	1200	11	37.85	736	115	58	48	2.5	255	78	NM	289	NM	NM	<0.02	<0.005	0.024	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
CG1184	6/2/2009	7.09	1368	13	28.72	924	141	61	57	2,6	284	111	NM	291	NM	NM	<0.02	<0.005	0.022	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.003	<0.01
CG1185	9/12/2008	3.77	4700	15	144.61	5250	209	518	70	3.8	3460	144	NM	<5	NM	1360	157.30 527.00	0.007	0.011	0.120	<0.01	79,060	0.04	0.120	25.800 759.000	NM NM	2.060 4.270	0,005 NM	19,970
CG1185	9/11/2009	3.23 7.07	8410 2050	17	144,61 40,43	12100 1350	389 239	1180 57	109	5.1 4.0	8350 354	243 366	NM NM	185	NM NM	3150 NM	<0.02	<0.005	0.032	0.250 <0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	0.029
CG1186	4/18/2008	6.97	2080	13	46.78	1360	233	58	115	4.3	337	349	NM	184	NM	NM	<0.02	0.005	0.032	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	0.018
CG1186	7/11/2008	7.05	2050	14	39.95	1400	226	55	105	3.9	363	366	NM	185	NM	NM	<0.02	<0.005	0.030	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
CG1186	10/9/2008	7.08	2010	13	47.40	1370	232	55	110	3.8	354	381	NM	181	NM	NM	<0.02	<0.005	0.037	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
CG1186	1/14/2009	7.10	2010	12	48.22	1380	240	55	109	4.1	348	379	NM	183	NM	NM	<0.02	<0,005	0.034	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
CG1186	4/8/2009	7.14	2080	13	48.32	1440	221	54	111	4.0	330	380	NM NM	180	NM	NM NM	<0.02	<0.005	0.033	<0.001	<0.01	<0.02	<0.02 <0.02	<0.005 <0.005	<0.01 <0.01	NM NM	<0.03 <0.03	<0.002 <0.002	<0.01
CG1186 CG1186	7/10/2009	6.85 7.00	2080 1912	15	49.23	1360 1360	232	54	109	5,3	331 320	379 372	NM NM	178	NM NM	NM NM	<0.02	0.005	0.033	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM NM	<0.03	<0.002	<0.01
CG1187	10/2/2009	6.97	2070	12	48.88	1280	240	61	73	4.5	131	512	0.2	155	NM	NM	<0.02	<0.005	0.145	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
CG1187	2/13/2008	7.10	1950	13	63.97	1270	246	61	73	4.7	132	497	0.2	157	NM	NM	<0.02	<0.005	0.139	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.003	0.068
CG1187	3/4/2008	6.75	2140	11	64.30 64.63	1290 1330	244	63 58	76 71	4.8	155 153	500 502	0.3	161	NM	NM NM	0.03	0.007 <0.005	0.151	<0.001	<0.01 <0.01	<0.02	<0.02	<0.005	<0.01 0.029	NM NM	<0.03	0.002	<0.01
CG1187	4/1/2008 5/9/2008	7.25 7.06	2210	13	64,66	1330	231	62	71	4.1	153	502	0.3	157	NM	NM	<0.02	0,006	0.142	<0.001	<0.01	0.025	<0.02	<0.005	<0.01	NM	<0.03	0.003	<0.01
CG1187	6/5/2008	7.00	2180	13	64.88	1480	252	65	73	4.6	158	512	0.2	155	NM	NM	<0.02	<0.005	0.143	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.003	<0.01
CG1187	7/2/2008	7,02	2190	15	64,30	1460	230	59	69	4.3	168	526	0,3	157	NM	NM	0.02	<0.005	0.146	<0,001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.004	0.120
CG1187	8/5/2008	6,85	2060	13	67.17	1440	246	64	76	4.8	187	487	0.2	163	NM	NM	<0.02	<0.005	0.134	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.003	0.062
CG1187	9/2/2008	6.95	2170	14	65.47	1450	241	64	76	4.9	176	505	0.2	155	NM	NM	<0.02	<0.005	0.150	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM MM	<0.03	0.003	<0.01
CG1187	10/2/2008	7.12	2220	14	67.50	1410	230	60	75	4.3	174	517	0.2	157	NM	NM NM	<0.02	<0.005	0.144	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0,003	<0.01
CG1187	2/3/2009	7.02	2150	12	66.30	1490	263	64	77	5.0	188	546	0.3	157	NM NM	NM NM	<0.02 <0.02	<0.005	0.140	<0.001	<0.01	<0.02	<0.08	<0.005	<0.01	NM NM	<0.03	0.004	<0.01
CG1187	3/10/2009	6.98	2180	12	66.57 66.38	1420 1460	247	64	78	4.7	181	511 554	0.2	158	NM NM	NM NM	<0.02	<0.005	0.140	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	NM	<0.01
CG1187	4/2/2009 5/1/2009	7.29	2260 2240	13	66.70	1430	232	63	77	4.7	184	529	0.2	163	NM	NM	<0.02	<0.005	0.150	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0,003	<0.01
CG1187	6/18/2009	7,26	2280	15	66.90	1650	246	64	80	5.3	176	537	0.3	161	NM	NM	<0.02	<0.005	0.150	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.003	<0.01
CG1187	7/7/2009	6.98	2250	16	66.92	1510	250	64	77	4.3	187	535	0.3	162	NM	NM	<0.02	<0.005	0.140	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.002	<0.01
										5.1		540	0,2	157	NM	NM	<0.02	<0.005	0.150	< 0.001	< 0.01	<0.02	< 0.02	<0.005	<0.01	NM	< 0.03	0.003	<0.01

WELL	DATE	pH su	Cond uS/cm	Temp C	DTW Feet	TDS mg/l	Ca-T mg/l	Mg-T mg/l	Na-T mg/l	K-T mg/l	SO4 mg/l	CI-T mg/l	F mg/l	Alk mg/l as CaCO3	Ag mg/l	Acidity mg/l as CaCO3	AI-D mg/l	As-D mg/l	Ba-D mg/l	Cd-D mg/l	Cr-D mg/l	Cu-D mg/l	Fe-D mg/l	Pb-D mg/l	Mn-D mg/l	Hg-T mg/l	Ni-D mg/l	Se-D mg/l	Zn-D mg/l
CG1187	9/9/2009	7.16	2190	16	67.44	1560	245	64	78	5.4	195	523	0.2	160	NM	NM	<0.02	0.009	0.140	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01 <0.01	NM MM	<0.03 <0.03	0.004	<0.01
CG1187	10/1/2009	7.21	2040	13 14	67.67 67.80	1430 1400	247 242	66 63	78 72	6.0 5.2	194 197	529 519	0.2	163 164	NM NM	NM NM	<0.02 <0.02	<0.005 <0.005	0.150 0.150	<0.001 <0.001	<0.01 <0.01	<0.02	<0.02 <0.02	<0.005	<0.01	NM NM	<0.03	0.004	<0.01
CG1187 CG1187	11/10/2009 12/4/2009	7.12	2280 2180	12	67.82	1400	242	65	78	5.2	201	505	0.2	163	NM	NM	<0.02	0.005	0.140	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	NM	<0.01
CG1188	1/8/2008	6.77	4000	12	45.97	3460	630	134	225	6.3	1650	475	0.2	275	NM	NM	<0.02	<0.005	0.026	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	0.016
CG1188	4/8/2008	7.15	4230	13	46.28	3470	635	140	240	6.3	1670	478	0.2	271	NM	NM	<0.02	0.005	0.026	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.002	<0.01
CG1188	7/24/2008	6.94	4240	15	46,90	3610	645	138	235	6.4	1650	495	0.2	279	NM	NM	<0.02	<0.005	0.027	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
CG1188	10/8/2008	6.99	3720	14	47.27	3470	635	136	231	6.0	1790	504	0.2	270	NM NM	NM NM	<0.02 <0.02	<0.005	0.026	<0.001	<0.01	<0.02 <0.02	<0.02 <0.02	<0.005	<0.01 <0.01	NM NM	<0.03 <0.03	<0.002 <0.002	0.011
CG1188 CG1188	1/8/2009 4/14/2009	6.83	4000 4110	12	47.66 47.98	3480 3440	626 607	130 133	224 235	6.1	1850 1660	522 543	0.2	274 270	NM	NM	<0.02	<0.005	0.027	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
CG1188	7/14/2009	6.94	4160	15	48.80	3520	620	132	236	6.6	1610	488	0.2	266	NM	NM	<0.02	<0.005	0.027	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
CG1188	10/19/2009	6.69	4030	15	49.06	3440	632	141	247	7.5	1670	526	0.2	268	NM	NM	<0.02	<0.005	0.026	<0.001	<0.01	<0.02	<0.02	<0.005	< 0.01	NM	<0.03	<0.002	<0.01
CG1189	1/14/2008	7.49	980	12	225.93	590	102	32	29	4.8	9	210	0.2	128	NM	NM	<0.02	<0.005	0.360	<0.001	<0.01	<0.02	<0.02	<0.005 <0.005	<0.01	NM	<0.03 <0.03	<0.002 <0.002	0.015 <0.01
CG1189	4/9/2008	7.61	990	13	225.46	588	102 99	32 31	29 29	4.6	14	214	0.3	126 130	NM	NM NM	<0.02	<0.005 <0.005	0.380	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	<0.002	<0.01
CG1189 CG1189	4/15/2008 7/11/2008	7.35 7.44	960 1020	15	225,80 223,70	590 660	98	32	28	4.0	14	227	0.3	128	NM	NM	<0.02	<0.005	0.325	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
CG1189	10/7/2008	7.50	969	14	226,19	606	95	29	27	4.2	14	215	0.3	131	NM	NM	<0.02	<0.005	0.280	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
CG1189	1/13/2009	7.40	5120	12	226.27	624	101	32	30	4.7	13	213	0.3	130	NM	NM	<0.02	<0.005	0.360	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	< 0.01
CG1189	4/14/2009	7.43	1010	13	225.60	616	97	32	30	4.7	13	226	0.3	127	NM	NM	<0.02	<0.005	0.360	<0.001	<0.01	<0.02 <0.02	<0.02 <0.02	<0.005	<0.01 <0.01	NM NM	<0.03	<0.002 <0.002	<0.01
CG1189 CG1189	7/10/2009	7.25	1008 993	17	226.05 225.95	628 612	96 102	31	28 31	4.7 5.3	12	226 221	0.3	125	NM NM	NM NM	<0.02 <0.02	<0.005 <0.005	0.360	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
CG1189 CG1190	1/14/2008	7.31	1345	13	133.96	840	159	44	27	3.0	52	298	NM	157	NM	NM	<0.02	<0.005	0.170	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	0.028
CG1190	4/9/2008	7.43	1370	13	133.90	844	160	46	29	3.0	58	294	NM	155	NM	NM	<0.02	<0.005	0.185	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
CG1190	7/22/2008	7.16	1420	15	134,40	1030	161	46	28	3.2	58	303	NM	162	NM	NM	<0.02	<0.005	0.167	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.002	<0.014
CG1190	10/7/2008	7.31	1333	14	134.80	886	151	42	27	2.6	57	304	NM MM	158	NM MM	NM	<0.02	<0.005	0.170	<0.001	<0.01	<0.02 0.021	<0.02 <0.02	<0.005 <0.005	<0.01	NM NM	<0.03	<0.002 <0.002	0.010
CG1190 CG1190	1/9/2009	7.11	1327 1380	12	135.28	912 876	171 156	45 45	27 28	3.2 2.9	66 59	321 322	NM NM	159	NM NM	NM NM	<0.02	<0.005	0.180	<0.001	<0.01	<0.021	<0.02	<0.005	<0.01	NM	<0.03	0.002	<0.010
CG1190 CG1190	4/14/2009 7/14/2009	7.05	1390	16	135.14	824	155	43	26	3.3	55	283	NM	154	NM	NM	<0.02	<0.005	0.170	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
CG1190	10/19/2009	7.23	1377	15	135,98	940	162	46	29	3.2	67	321	NM	152	NM	NM	<0.02	<0.005	0.170	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
CG1203	11/12/2008	4.13	9430	12	NM	13900	457	1380	100	<0.5	10500	153	NM	<5	NM	NM	536.00	0.017	<0.01	0.210	0.028	224.000	0.05	<0.005	69.600	NM NM	5.030	0.005	51.500
CG1203	6/8/2009	3.39	9620	14	0.00	16000	440	1340	62	3.2	11600	131	NM	<5	NM NM	NM NM	850.00 NM	0.012	<0.01	0.220	0.138	310,000 0,210	14.66 NM	<0.005 <0.005	74,400 NM	NM	3,920 NM	<0.002	56,200 0.343
CG299	3/27/2008	6.06 6.13	2850 3220	10	164.50 166.25	2250 2590	254 298	179	129 146	8.7 9.9	1270 1680	244 228	NM NM	51	NM	NM	NM	<0.005	0.012	0.005	<0.01	0,230	NM	<0.005	NM	NM	NM	0.002	0.440
CG299 CG299	6/18/2009	6.37	2920	18	167.56	2500	286	187	139	10.0	1440	265	NM	56	NM	NM	NM	<0.005	0.012	0.005	<0.01	0.135	NM	<0.005	NM	NM	NM	<0.002	0.320
CG299	12/18/2009	5.82	3430	12	168.48	2960	338	257	161	12.0	1820	216	NM	29	NM	NM	NM	<0.005	0.012	0.008	< 0.01	0.250	NM	<0.005	NM	NM	NM	0.002	0.500
CG900	1/7/2008	6.95	1805	17	159.19	1250	220	61	70	4.7	290	310	NM	219	NM	NM	NM	<0.005	0.070	<0.001	<0.01	<0.02	NM NM	<0.005	NM NM	MIA	NM MN	NM <0,002	<0.01
CG902	4/4/2008	7.11	1670	14	180.10	1020	177	51	74 76	4.3	270 309	250 249	NM NM	220	NM NM	NM NM	NM NM	0.005 <0.005	0.088	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002	<0.018
CG902 CG902	11/17/2008 6/4/2009	7.18	1565 1712	13	183.15	1030	191	51 54	81	5.0	280	264	NM	217	NM	NM	NM	<0.005	0.083	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.003	<0.01
CG902	12/17/2009	6.97	1599	13	184,43	980	168	50	73	5.0	263	248	NM	227	NM	NM	NM	<0.005	0.090	<0,001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002	<0.01
CG905	2/13/2008	6.22	2450	12	213.47	2130	393	93	85	7.2	1260	129	NM	180	NM	NM	NM	<0.005	0.024	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.002	0.011
CG905	3/4/2008	6.48	2600	11	214,46	2130	409	99	90	7.8	1190	128	NM	178	NM	NM	NM NM	<0.005	0.026	<0.001	<0.01	0.069	NM NM	<0.005	NM	NM NM	NM	<0.002 <0.002	0.022
CG905	7/24/2008	6.28	2570	17	215.26	2230	413 404	96 98	84 87	7.5 7.5	1240	134	NM NM	175	NM	NM NM	NM	<0.005	0.025	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.002	<0.01
CG905 CG905	6/2/2009	6.27	2650 2490	15 13	217.30 216.60	2310 2130	385	98	84	8.1	1270 1210	131 140	NM	178	NM	NM	NM	<0.005	0.025	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0,002	<0.01
CG906	2/27/2008	7.15	4250	13	109.20	4030	728	169	283	12.0	2030	388	NM	451	NM	NM	NM	<0.005	0.024	<0.001	<0.01	0.078	NM	< 0.005	NM	NM	NM	<0.002	0.018
CG906	7/25/2008	7.06	4700	15	109.94	4080	740	169	282	12.0	2080	196	NM	459	NM	NM	NM	<0.005	0.023	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.002	0.014
ECG906	5/18/2009	6.99	4440	15	111.63	4090	737	167	269	12.0	2020	421	NM NM	463 487	NM NM	NM NM	NM NM	<0.007	0,025	<0.001	<0.01	<0.02	NM NM	<0.005	NM NM	NM NM	NM NM	<0.002	<0.01
CG906 CG907	11/5/2009	7.20	4370 2500	14	112.58	4100 1590	723	166 71	281 65	13.0 6.4	2120 224	421 540	NM NM	226	NM	NM	NM	<0.005	0.024	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002	0.016
ECG907	2/20/2008	6.93	2490	13	108.98	1720	298	71	75	9.7	259	561	NM	226	NM	NM	NM	0.008	0.125	<0.001	<0.01	<0.02	NM	< 0.005	NM	NM	NM	0.003	<0.01
CG907	3/4/2008	6.75	2570	13	109.05	1560	316	76	72	7.1	233	536	NM	224	NM	NM	NM	0.005	0.126	<0.001	<0.01	<0.02	NM	< 0.005	NM	NM	NM	0,002	0.012
CG907	4/1/2008	7.25	2530	13	109.27	1580	300	69	66	6.3	240	544	NM	224	NM	NM	NM	<0.005	0.126	<0.001	<0.01	<0.02	NM NM	<0.005	NM	NM NM	NM	0.003	0.013
CG907	5/9/2008 6/5/2008	7.00	2520 2470	14	109.51 109.66	1740 1710	312 322	72 73	64 65	6.6	260 249	557 548	NM NM	226	NM	NM NM	NM NM	0.006	0.120	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.003	<0.01
CG907	6/5/2008 7/2/2008	7.05	2470	16	109.66	1710	298	69	63	6.2	250	596	NM NM	228	NM	NM	NM	<0.005	0.123	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.003	<0.01
CG907	8/4/2008	7.13	2610	14	103,31	1730	301	70	65	6.4	265	550	NM	257	NM	NM	NM	0.007	0.126	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.003	0.126
CG907	9/2/2008	7.20	2450	15	110.26	1730	309	74	68	7.0	246	531	NM	222	NM	NM	NM	<0.005	0.130	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.010	<0.01
CG907	10/2/2008	6.94	2510	15	110.32	1680	301	71	66	6.2	259	550	NM	226	NM	NM	NM	<0.005	0.116	<0.001	<0.01	<0.02	NM NM	<0.005	NM	NM NM	NM NM	0.004	<0.01
CG907	5/18/2009	6.88	2580 2650	16	111.77	1670 1640	313	71	64	7.1	238 267	576 554	NM NM	228	NM	NM NM	NM NM	0.008	0.120	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.003	<0.01
CG907	12/3/2009 3/13/2008	7,33 7,91	1200	12	103.31 37.87	700	314 52	36	135	5.7	187	140	NM	188	NM	NM	NM	<0.005	0.015	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002	<0.01
CG916	7/25/2008	7.89	1200	17	38.77	694	51	37	140	6.2	194	140	NM	188	NM	NM	NM	<0.005	0.015	<0,001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002	0.014
CG916	5/26/2009	7.97	1202	17	38.25	670	52	36	135	6.3	205	147	NM	187	NM	NM	NM	<0.005	0.015	<0,001	<0.01	<0.02	NM	<0.005	NM	NM NM	NM NM	0.218 <0.002	<0.01
CG916	12/15/2009	7.98	1123	11	39.17	668	44	36	138	6.1	198	148	NM MM	185	NM NM	NM NM	NM <0.02	<0.005	0.016	<0.001	<0.01	<0.02	NM <0.02	<0.005	NM <0.01	NM NM	<0.03	0,002	<0.01
CG917 CG917	1/7/2008	7.01	1812 1870	12	127.75 128.25	1160 1120	201	51 53	85 89	4.6	126 134	414	NM	188	NM	NM	<0.02	<0.005	0.128	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
CG917 CG917	7/10/2008	6.98	1970	16	128.25	1230	195	50	81	4.4	141	428	NM	191	NM	NM	<0.02	<0.005	0.108	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.01
CG917	11/13/2008	6.91	1938	14	129.92	1160	200	50	87	4.2	148	421	NM	194	NM	NM	<0.02	<0.005	0.130	<0.001	<0.01	<0.02	<0.02	< 0.005	<0.01	NM	<0.03	0.003	<0.01
CG917	1/7/2009	7.14	1798	12	130.53	1180	216	52	86	4.8	156	437	NM	190	NM	NM	<0.02	<0.005	0.130	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.002	<0.0
CG917	4/8/2009	7.15	1921	13	130.70	1290	196	50	83	4.5	139	421	NM	191	NM	NM	<0.02	<0.005	0.130	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM NM	<0.03	<0.003	<0.0>
CG917	7/10/2009	7.11	1937	15	131.90	1230 1180	212	52 51	87 86	5.3 5.1	137 35	428 164	NM NM	187 195	NM NM	NM NM	<0.02	<0.005	0.127	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.002	<0.0
CG917 CG922	10/28/2009 5/6/2008	7.08	1818	12	132.24	982	177	56	48	3.2	90	337	NM	186	NM	NM	<0.02	<0.005	0.063	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.0
CG922	5/22/2009	7.10	1608	15	115.33	1010	166	52	46	2.9	96	361	NM	180	NM	NM	<0.02	<0.005	0.061	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002	<0.0
CG923	4/17/2008	7.45	1600	14	106.84	918	119	18	172	3.7	108	313	NM	206	NM	NM	NM	0.006	0.138	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002	<0.01
CG923	11/13/2008	7.34	1647	15	108.35	900	120	18	178	3.7	104	324	NM	211	NM	NM	NM	0.006	0.140	<0.001	<0.01	<0.02	NM NM	<0.005	NM NM	NM	NM NM	<0.002	<0.01
CG923	5/18/2009 12/3/2009	7.23	1670	15	109,91	902	120	19	165	3.8	88	335	NM NM	215 226	NM NM	NM NM	NM NM	0.012	0.140	<0,001	<0.01 <0.01	<0.02	NM NM	<0.005	NM	NM NM	NM NM	0.002	<0.01
CG923		7.62	1700	12	104.92	896	114	18	172	4.0	99	314	INM	220	IAIA	INDI	IMIN	0.000	0.130	10,001	10.01	10,02	1 1915	-0,003	1 1411	1 1411	1	1 01002	

		pН	Cond	Temp	DTW	TDS	Ca-T	Mg-T	Na-T	K-T	S04	CI-T	F	Alk	Aq	Acidity	AI-D	As-D	Ba-D	Cd-D	Cr-D	Cu-D	Fe-D	Pb-D	Mn-D	Hg-T	Ni-D	Se-D	Zn-D
WELL	DATE	su	uS/cm	C	Feet	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l as CaCO3	mg/l	mg/l as CaCO3	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
ECG924	1/30/2008	6.79	5401	10	33.54	4480	627	335	256	13.0	2380	511	NM	437	NM	NM	NM	<0.005	0.028	0.003	<0.01	<0.02	NM	<0.005	NM NM	NM NM	NM NM	<0.002 <0.002	0.083
ECG924	4/15/2008	6.49	5130	13	31.47	4500	628	338	270	13.0	2530	543	NM	424 428	NM	NM NM	NM NM	0.006	0.029	0.003	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.002	0.103
ECG924 ECG924	7/9/2008 11/13/2008	6.52 6.55	5280 5410	15 13	31.83 32.70	4630 4570	598 632	329 332	265 272	13.0	2500 2510	543 535	NM NM	430	NM	NM	NM	0.005	0.028	0.002	<0.01	<0.02	NM	<0.005	NM	NM	NM	0,037	0.086
ECG924	1/14/2009	6,45	5260	13	33,38	4560	648	346	267	13.0	2420	542	NM	431	NM	NM	NM	<0.005	0.029	0.002	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002	0.073
ECG924	4/3/2009	6.76	5480	11	32.90	4640	600	328	271	13.0	2380	522	NM	428	NM	NM	NM	<0.005	0.027	0.002	<0.01	<0.02	NM	<0.005	NM	NM NM	NM NM	<0.002 0.002	0.085
ECG924	7/9/2009	6,55	5380	15	31.20	4640	623	334	266	14.0	2280	552	NM NM	415	NM MM	NM NM	NM NM	<0.005	0.027	0,002	<0.01 <0.01	<0.02	NM NM	<0.005 <0.005	NM NM	NM NM	NM NM	<0.002	0,072
ECG924 ECG925	10/28/2009	6.65 6.80	4900 3912	11	32,13 36.71	4500 2440	628 441	341 105	270 178	15.0 5.2	2300 914	582 577	NM NM	348	NM	NM	NM	0.007	0.028	<0.002	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.003	0.013
ECG925	4/11/2008	6.78	3580	13	34.20	2520	478	118	203	5.8	955	601	NM	352	NM	NM	NM	0,005	0.033	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.003	0.012
ECG925	7/9/2008	6.59	3840	14	35,68	2670	464	115	204	5.3	994	578	NM	361	NM	NM	NM	<0.005	0.031	<0.001	<0.01	<0.02	NM	<0.005	NM NM	NM	NM	0.003	0.010
ECG925	11/13/2008	6.63	3590	14	33.52	2420	448	109	196	5,2	913	579	NM NM	336	NM NM	NM NM	NM NM	0,005	0.030	<0.001	<0.01 <0.01	<0.02	NM NM	<0.005 <0.005	NM	NM NM	NM	0.004	<0.01
ECG925	1/7/2009	6.82	3220 3550	13 12	36.00	2500	451 426	113	200 192	5.6	940 831	610 588	NM NM	331 335	NM NM	NM NM	NM NM	<0.005	0.030	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.003	<0.01
ECG925 ECG925	4/3/2009 7/9/2009	6.92	3960	15	35.11 33.66	2520 2830	506	125	215	6.5	991	651	NM	353	NM	NM	NM	<0.005	0.033	<0,001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0,004	<0.01
ECG925	10/28/2009	6.81	3430	11	36.38	2510	465	118	200	7.1	881	652	NM	335	NM	NM	NM	0.006	0.031	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.003	<0.01
ECG931	2/20/2008	6.74	719	13	49.95	5370	882	204	330	14.0	581	2260	NM	214	NM	NM	NM	0,009	0.084	<0.001	<0.01	<0.02	NM NM	<0.005 <0.005	MM	NM NM	NM NM	0.012	<0.01
ECG931	8/5/2008	6.55	6550	14	51,03	5420 5260	914	206	330 323	14.0 15.0	578 552	2160 2230	NM NM	212	NM NM	NM NM	NM NM	<0.005 <0.005	0.081	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.011	<0.01
ECG931 ECG931	2/24/2009 8/14/2009	6.93	7630 7460	14 16	51.35 50.78	5260	851	208 199	326	15.0	507	2310	NM	206	NM	NM	NM	<0.005	0.085	<0.001	< 0.01	<0.02	NM	<0.005	NM	NM	NM	0.012	<0.01
ECG932	1/8/2008	6.95	1080	12	84.84	646	110	48	28	2.9	133	129	NM	250	NM	NM	NM	<0.005	0.030	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002	0.019
ECG932	8/5/2008	6.94	1062	14	84.91	630	117	50	30	2.9	158	124	NM	247	NM	NM	NM	<0.005	0.027	<0.001	<0.01	<0.02	NM	<0.005	MM	NM NM	NM MM	<0,002 <0.002	0.046 <0.01
ECG932	1/7/2009	7.07	1061	13	85.55	646	120	52	30	3.2	159	135	NM	249	NM NM	NM NM	MM	<0.005	0.031	<0.001	<0.01	<0.02	NM NM	<0,005 <0,005	NM NM	NM NM	NM NM	<0,002 NM	<0.01
ECG932 ECG933	8/13/2009 6/17/2008	7,36 6.00	213	18	83.85 120.30	666 1830	115 305	50 90	109	3.3 5.5	1000	133	NM NM	148	NM NM	NM NM	NM	<0.005	NM	0.055	NM	<0.02	NM	<0.005	NM	NM	NM	NM	4.370
ECG934	5/13/2008	6,98	1380	13	117.80	888	155	53	58	3.2	347	95	NM	286	NM	NM	NM	<0.005	0.035	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002	0.015
ECG934	10/31/2008	6.87	1370	13	120.12	884	170	55	56	3.2	339	93	NM	292	NM	NM	NM	<0.005	0.032	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002	0.017
ECG934	5/19/2009	6.94	1385	15	116.81	870	158	54	55	3.2	328	97	NM NM	288	NM MM	NM NM	NM NM	<0.005	0.034	<0.001	<0.01 <0.01	<0.02	NM NM	<0.005	NM NM	NM NM	NM NM	0,013 <0.002	0.019
ECG934	11/25/2009	7.07	1483 3280	12	119.90 53.08	868 2640	153 387	52 164	53 178	3.3 5.3	320 1380	99 228	NM NM	291 390	NM	MM	NM	<0.005	0.032	<0.001	<0.01	0.031	NM	<0.005	NM	NM	NM	0,003	0.033
ECG935 ECG935	4/3/2008 11/6/2008	6.93	3500	12	53.10	2730	401	175	186	5.6	1360	228	NM	394	NM	NM	NM	<0.005	0.022	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.003	0.011
ECG935	5/8/2009	6.80	3400	12	52.85	2740	411	174	183	6.1	1420	226	NM	391	NM	NM	NM	<0.005	0,023	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.004	<0.01
ECG935	12/2/2009	7.16	3770	15	53.23	2880	398	168	185	6.8	1460	207	NM	394	NM	NM	NM NM	<0.005	0,023	<0.001	<0.01 <0.01	<0.02 <0.02	NM NM	<0.005 <0.005	NM MM	NM NM	NM	0.003	<0.01
ECG936	4/3/2008	6.67	4380	13	42.68	4010 3970	564 565	286 283	208 205	4.8	2300 2230	254 265	NM NM	310 316	NM NM	NM NM	NM NM	0.013	0.011	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.002	0.025
ECG936 ECG936	11/7/2008 5/8/2009	6.59	4520 4380	12	47.80 47.80	4000	565	283	205	5.2	2330	259	NM	310	NM	NM	NM	0.013	0.011	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.003	0.019
ECG936	12/2/2009	6.92	5020	9	42.68	4010	548	267	216	6.0	2280	260	NM	312	NM	NM	NM	0.014	0.012	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002	0.016
ECG937	5/13/2008	6.94	1670	13	241.91	1070	187	46	86	2.8	398	160	NM	268	NM	NM	NM	0.005	0.020	<0.001	<0.01	<0.02	NM NM	<0.005 <0.005	NM	NM NM	NM NM	<0.002	0.019
ECG937	10/15/2008	6.84	1693	14	242.60	1050	196	48 47	82	2.8	409	163	NM NM	265 269	NM MM	NM NM	NM	<0.005 <0.005	0.019	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002	0.015
ECG937 ECG937	5/19/2009	6.84 7.08	1666 1719	17	242.15 243.00	1050 1050	195 195	47	81 85	2.8 3.1	400 392	172 187	NM	269	NM	NM NM	NM NM	<0.005	0.020	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002	0.013
ECG937 ECG938	4/22/2008	6,95	1320	14	215.28	766	143	49	76	2.5	213	124	NM	305	NM	NM	NM	0.012	0.022	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002	0.012
ECG938	10/15/2008	6.99	1410	14	215,93	772	131	47	67	2.1	256	129	NM	303	NM	NM	NM	0.010	0.025	<0,001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002	0.012
ECG938	5/19/2009	7.00	1302	15	214.30	784	132	48	71	2.3	216	141	NM MM	301	NM MM	NM NM	NM NM	0.010	0.026	<0.001	<0.01 <0.01	<0.02	NM NM	<0.005	NM NM	NM NM	NM NM	<0.002 <0.002	0.018 <0.01
ECG938 EPG1165A	10/28/2009	7.16 7.16	1366 1255	10	215.80 257.28	792 810	139	48	74 45	2.6	211	145 201	0.1	303	NM	NM NM	NM	<0.009	0.025	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.003	<0.01
EPG1165A EPG1165A	4/7/2008	7.16	1332	14	257.26	788	140	45	45	2.4	153	215	0.1	212	NM	NM	NM	<0.005	0.055	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	< 0.03	0.003	<0.01
EPG1165A	7/18/2008	7.04	1317	17	250.35	878	140	45	42	2.7	157	199	0.1	209	NM	NM	NM	<0.005	0.051	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.003	<0.01
EPG1165A	7/22/2009	7.04	1278	18	244.04	772	158	48	46	2.5	176	206	0.1	194	NM	NM	NM	<0,005	0.073	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM <0.0003	<0.03 <0.03	0.003	0.035 <0.01
EPG2780B	9/5/2008	7,56	778	16	182,33	436	52	31	52	3,8	63	107 117	NM NM	156 151	NM MM	NM NM	<0.02	<0.005	NM NM	<0.001	0.015 <0.01	<0.02	<0.02 <0.02	<0.005 <0.005	<0.01	<0.0002 NM	<0.03	0.002	<0.01
EPG2780B EPG2781A	8/27/2009 9/4/2008	7.50	763 4740	18	180.18 207.96	408 4360	51 616	29 397	48 145	3.8 6.8	56 2510	330	NM	570	NM	NM	0.21	<0.005	NM	0.021	<0.01	<0.02	<0.02	<0.005	7.890	<0.0002	0.360	0.005	0.810
EPG2781A	11/23/2009	6.21	4870	14	209.22	4370	603	401	148	6.9	2510	359	NM	549	NM	NM	0.20	<0.005	NM	0.020	<0.01	<0.02	<0.02	<0.005	7.610	NM	0.350	0.006	0.770
EPG2781B	9/4/2008	6.32	6200	16	208.16	6410	541	849	134	8.8	3980	231	NM	982	NM	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	0.220	0.0004 NM	0.060	<0.002	0.041
EPG2781B	11/23/2009	6.25	6270	14	209,00	6200	530	861	130	6.3	3760	243	NM	959	NM NM	NM NM	<0.02 NM	<0.005	NM 0.023	<0,001	<0.01	<0.02	<0.02 NM	<0.005	0.215 NM	NM	0.058 NM	0.002	0.031
EPG2785A EPG2785A	2/6/2008 7/23/2008	6.36	5070 5010	13	204.83	5250 5370	641	544 529	155 158	8.8 9.0	2940 3170	149 151	NM NM	763 750	NM	NM	NM	<0.005	0.023	0.002	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.004	0.052
EPG2785A EPG2785A	9/2/2009	6.53	4930	17	205.55	5120	624	514	152	8.2	2990	155	NM	749	NM	NM	NM	<0.005	0.017	0.002	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.005	0.032
EPG2785B	2/6/2008	6.43	4430	13	197.20	4320	710	272	187	7.1	2230	331	NM	512	NM	NM	NM	<0.005	0.024	<0.001	0.015	<0.02	NM	<0.005	NM	NM	NM NM	0,007	0.016
EPG2785B	7/23/2008	6.19	4330	17	197.81	4470	719	278	187	7.4	2270	336	NM	512	NM	NM	NM	<0.005	0.021	<0.001	<0.01	<0.02	NM NM	<0.005	NM MM	NM NM	NM	0,008	0.021
EPG2785B HMG1122A	9/2/2009	6.39 7.31	4640 1584	17 15	196.82 318.75	4360 1060	710 206	292 59	202 47	7.4	2360 390	334 154	NM NM	522 246	NM	NM NM	NM <0.02	<0.005 <0.005	0.021 NM	<0.001 <0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.002	<0.01
HMG1122A HMG1122A	9/12/2008	7.22	1411	12	330.08	996	195	55	45	3.1	350	145	NM	250	NM	NM	<0.02	<0.005	NM	<0,001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.002	<0.01
HMG1123A	3/10/2008	7.19	2320	14	316.73	1680	318	85	76	5.6	680	305	0.2	216	NM	NM	NM	<0.005	0.028	<0.001	<0.01	<0.02	<0.02	<0.005	0.030	NM	<0.03	0.006	0.013
HMG1123A	7/18/2008	7,29	2320	17	320.05	1770	297	78	68	5.2	663	292	0.1	213	NM	NM	NM	<0.005	0.027	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM NM	<0.03	0.006	0.013
HMG1123A	6/30/2009	7.27	2330	18	329.90	1770	312	81	74	5.4	667 669	294	0.2	216	NM NM	NM NM	NM NM	<0.005	0.026	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.006	<0.01
HMG1123A HMG1126B	12/23/2009 6/13/2008	7.38 7.25	2210 1542	12	334.68	1560	316 197	85 53	47	6.0 2.6	391	290 129	NM	269	NM	NM	NM	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0,003	<0.01
HMG1126B HMG1126B	8/25/2008	7.25	1504	16	318.32	1090	197	54	49	3.2	386	125	NM	272	NM	NM	NM	<0.005	NM	<0.001	<0.01	<0.02	<0.02	0.006	<0.01	NM	< 0.03	0.002	0.026
HMG1126B	5/8/2009	7.35	1417	13	324.07	1000	198	52	47	3.0	397	130	0.1	269	NM	NM	NM	<0.005	0.052	<0.001	<0.01	<0.02	70.0	<0.005	<0.01	NM	<0.03	NM	<0.01
HMG1126B	7/31/2009	7.07	1242	17	325.92	1010	209	55	49	3.0	390	123	0.1	271	NM	NM	NM	<0.005	0.046	<0.001	<0.01 NM	<0.02	<0.02 NM	<0.005	<0.01 NM	NM NM	<0.03 NM	0.002	<0.01
HMG1134B	11/16/2009	7,71	445	12	205,37	230 1890	30 342	12	38 85	2.5	834	53 237	NM NM	116 293	NM NM	NM NM	NM NM	<0,005	NM NM	<0,001	NM NM	<0.02	NM NM	<0.005 <0.005	NM	NM	NM	0.002	<0.01
HMG1163A HMG1514	9/12/2008	6.67	2340 1377	14	13,03 NM	920	143	47	72	4.5	184	184	0.2	259	NM	NM	<0.02	<0.005	0,069	<0.001	<0.01	<0.02	NM	<0.005	0.083	NM	<0.03	<0.002	0.150
HMG1514	9/22/2008	7.18	2150	13	150,00	1500	247	66	89	5.5	225	469	NM	226	NM	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	NM	<0.005	0.013	NM	<0.03	0.003	0.020
	8/26/2008	7.31	1658	16	130.00	1110	176	46	65	7.7	126	323	NM	228	NM	NM	0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	0.022	NM	<0.03	0,002	0.022
HMG1519								62	62	3.4	290	158	0.1	322	NM	NM	< 0.02	< 0.005	0.036	< 0.001	< 0.01	< 0.02	< 0.02	< 0.005	< 0.01	NM	< 0.03	0,004	0.200
HMG1524	9/3/2008	6.83	1550	17	NM	1090	179												0.007	-0.001	10.01	-0.00	0.00	<0.00F	0.016	MIA		0.004	<0.04
	9/3/2008 9/3/2008 4/2/2008	6.83 6.99 3.06	1550 1600 11710	17 17 13	NM NM 78.85	1090 1170 19200	179 184 408	64 2050	66	3.6	315 14400	171	0.2 NM	316	NM	NM NM	<0.02 NM	<0.005	0.037	<0.001	<0.01 0.055	<0.02 44.300	0.09 NM	<0.005 <0.005	0.018 NM	NM 0.0017	<0.03 NM	0.004	<0.01 52,100

Zn-D mg/l 0.014 0.049 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 56.400 55.400 55.400	6,000000000000000000000000000000000000	6.890 6.450 6.960 6.960 6.130 6.130 0.560 0.050 0.050 0.144
Se-D mg/l 0.002 0.034 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.001 0.015	0.0004 0.	0.006 0.005 0.005 0.006 0.006 0.007 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ni-D mg/l mg/l c0.03 c0.	\$890 \$800 \$800 \$800 \$800 \$800 \$800 \$800	0.101 0.085 0.088 0.088 0.088 0.088 0.083 0.080
Hg-T MM NMM NMM NMM NMM NMM NMM NMM	WAY	40,0002 NIM SOND NIM NIM NIM NIM SOND CD,0002 CD,0002 CD,0002 CD,0002 CD,0002 CD,0002 CD,0002 CD,0002 CD,0002 CD,0002
Mn-D mg/l <0.01 <0.01 0.020 0.017 NM <0.01 <0.019 77.300 78.200 78.200 78.200 78.200	82,100 82,100 83,100 84	0.01 0.01 0.019 0.019 0.016 0.016 0.016 0.014 NM NM NM
Pb-D mg/l <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.113 0.1140 0.1150 0.1	40.005 40.005
Fe-D mg/l 0.06 0.13 0.03 0.09 0.11 0.15 0.29 0.32 0.31	0.59 0.59 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.6	(0.02 (0.02
Cu-D mg/l <0.02 <0.02 <0.03 <0.03 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0	228.71.40 228.71.40 228.71.40 228.71.60 222.1000 222.1000 232.1000	0.041 0.023 0.023 0.022 0.022 0.021 0.021 0.021 0.022 0.
Cr-D mg/l 0.01 0.01 0.01 0.01 0.01 0.018	0.0222 0.0222 0.0222 0.0223 0.	(0.01) (0
Cd-D mg/l <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.235 0.235	0.259 0.259 0.259 0.259 0.259 0.259 0.250	0.050 0.050 0.044 0.047 0.046 0.046 0.046 0.046 0.046 0.046 0.001 0.046 0.001 0.040 0.001 0.001 0.001 0.001
Ba-D mg/l 0.063 0.070 0.064 0.065 0.062 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065	40.01 40.01	NM N
As-D mg/l -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.016 -0.016 -0.016	0.0024 0.0024 0.0019 0.0119 0.	40,005 40,005
AHD MM NM	NM N	NM N
Acidity mgl as CaCO3 NM	72-40 72-40 50-24 50-24 50-24 50-20 50	MM M M M M M M M M M M M M M M M M M M
Ag mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/	NAM	MN N N N N N N N N N N N N N N N N N N
AIK mg/l as CaCO3 187 178 178 178 178 178 183 183 184 26 <5 <5	1	288 303 305 306 300 295 296 296 207 145 142 152 161
P mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	를 받는 것 같은 다음	NM NM NM NM NM 0.1 0.1 0.3 0.3 0.3
CI-T mg/l 354 347 347 354 354 359 374 168 175 168	1778 1778 1778 1778 1778 1778 1778 1778	419 432 425 425 426 447 480 243 233 103 81 77 77
SO4 mg/l 141 143 129 150 141 141 142 143 143 140 100 1040 1010 1110	1970 1970	2600 2490 2430 2430 2400 2400 2550 2550 2550 251 410 136 87 43
K-T ### ### ### ### #### ################	3.0 3.0 3.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	7.6 7.7 7.7 7.7 7.6 7.9 9.3 3.2 3.2 3.2 3.2 3.2 2.5 2.5 2.5
Na-T mg/l e6 67 73 70 67 67 72 72 72 72 72 72 72 72 72 72 72 72 72	8 8 8 9 9 9 8 8 8 9 9 0 0 0 0 0 0 0 0 0	253 252 242 243 244 259 242 48 46 80 80 47 77
Mg-T mg/l 51 51 51 50 50 50 50 50 51 51 1480 1480	1400 1400 11500 11	370 382 382 366 369 359 352 59 59 21 21 20 20
Ca-T mg/l 185 185 169 170 170 173 176 367 351 374	3557 3567 357 357 357 357 357 357 357 35	536 561 554 556 531 547 197 181 106 53 44 47
TDS mg/l 1050 1040 1060 1060 1060 1050 1050 1210 972 1300 1500 1500 1500 1500 1500 1500 1500	15500 15500 15500 15100	4530 4580 4470 4470 4510 4540 4560 996 942 828 470 400 340 346
DTW Feet 144.00 144.40 215.00 215.00 215.00 215.00 215.00 215.00 215.00 78.31 80.06 82.54	7.7 February 17.7 February 17.	24.45 24.45 24.95 24.95 24.05 24.21 23.00 24.36 325.55 325.30 285.30 285.20 285.20 286.30
Temp C C C C C C C C C C C C C C C C C C C	6 6 7 7 7 7 8 8 7 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8	14 15 11 12 12 15 16 16 18 18
LS/cm 1831 1730 1730 1738 1741 1741 1728 1705 1705 1705 1705 1705 1705 1705 1705	19980 10710 11710	5030 5040 4420 4990 4630 5310 4630 1453 1391 1204 784 688 628
pH su su 723 7.38 7.38 7.30 7.27 7.07 7.07 7.07 7.07 7.07 7.07 7.0	3.455 3.455	6.71 6.56 6.49 6.49 6.53 6.62 6.62 6.61 6.89 7.86 7.54 7.54 7.59
DATE 1125/2008 448/2008 818/2008 818/2008 11/11/2008 4/8/2009 11/20/2009 11/20/2009 11/20/2009 11/20/2009 12/8/2009 12/8/2009 12/8/2009 12/8/2009 12/8/2009 12/8/2009 12/8/2009 12/8/2009	66770000 66770000 67720000	5/12/2008 1/14/2008 1/14/2009 4/3/2009 6/3/2009 6/6/2008 1/11/2008 1/11/2008 7/21/2009 5/18/2009 1/11/2008 1/14/2008 1/4/2008
1		LTG11871 LTG11871 LTG11871 LTG11871 LTG11871 LTG11871 LTG11871 LTG11871 LTG1187 P19288 P19288 P19288 P19288

March Date	mg/l mg/l <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0	Pb-D Mn-D mg/l	Hg-T mg/l <0.0002	Ni-D Se-D mg/l mg/l <0.03 <0.00	l mg/l
Fig.	<0.02 <0.02 < <0.02 <0.02	<0.005 <0.01			
PFFR	<0.02 <0.02				
Pigor 10/28/1099 7.15 2410 13 499.50 1970 349 98 68 4.3 903 286 1841 205 1841 1841 205 1841 1841 205 1841		<0.005 <0.01	<0.0002	<0.03 <0.00 <0.03 0.005	
Probable 60/2008 50/4 5900 15 594.00 6390 457 647 65 9.8 5120 171 1814 39 MM MM 3.26 0.000 MM 0.340 0.011 Probable 60/2008 6.85 3210 13 428.55 3500 661 191 107 4.7 2130 211 1814 225 1814 1814 0.002 4.005 MM 4.0001 4.001 Probable 61/12/05 6.85 3210 13 428.55 3500 661 191 107 4.7 2130 211 1814 225 1814 1814 0.002 4.005 MM 4.0001 4.001 Probable 61/12/05 6.85 3210 13 428.55 3500 661 191 107 4.7 2130 211 1814 223 1814 4.002 4.005 MM 4.0001 4.001 4.001 Probable 6.85		<0.005 <0.01	NM	<0.03 0,005	
Provide 6-67-000 6.85 32-10 13 493-55 3500 681 191 107 4.7 2130 211 NM 225 NM NM < 0.02 < 0.005 NM < 0.001 < 0.011	0.150 <0.02	<0.005 47.800	0.0032	3.100 0,006	
Fig.		<0.005 35.800 <0.005 <0.01	NM <0.0002	1.870 0.006 <0.03 0.004	
P220 S11/12/2008 6.95 2550 14		<0.005 <0.01	NM	< 0.03 0.003	
P220		<0.005 NM	NM	NM <0.00	0.011
P220		<0,005 NM	NM	NM <0.00	
P225		<0.005 NM <0.005 NM	NM NM	0.00 MM <0.00	
P225		<0.005 NM	<0.0002	NM <0.00	
P225 115/2009 7.06 1370 12 62.18 896 152 41 69 4.5 236 196 NM 217 NM NM NM 0.007 0.130 <0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0		<0.005 NM	NM	NM <0.00	2 <0.01
P228		<0.005 NM	NM	NM <0.00	
P228 411/2009 6.15 6670 15 23.50 6810 448 892 144 5.7 4690 296 NM 138 NM NM NM P228 117/2008 5.99 6670 13 24.45 6850 483 912 151 5.5 4.860 308 NM 135 NM NM NM P228 117/2009 6.92 6.97 6.97 6.97 6.97 6.97 6.97 6.97 6.97		<0,005 NM <0,005 NM	NM NM	NM <0.00 NM <0.00	
P228		<0.005 NM	NM	NM <0.00	
P228		<0.005 NM	NM	NM <0.00	
P228 49/2009 6.32 6460 12 24.30 6600 443 900 154 5.8 4550 324 NM 136 NM NM NM < 0.005 < 0.01 0.021 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <		<0.005 NM	NM	NM <0.00	
P288		<0.005 NM <0.005 NM	NM NM	0.00 MM <0.00	
P288 10/2/0209 6.28 6010 13 25.52 65.20 462 858 149 4.7 4250 259 NM 131 NM NM NM <0.005 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		<0.005 NM	NM	NM NM	
F2418 6742008 3.20 6320 17 439.43 1900 439 1340 76 9.3 6270 122 NM 5 NM NM 308.00 0.014 NM 0.517 40.01 F2416 6162008 7.08 2.550 13 339.22 1950 371 99 65 5.4 880 360 18M 170 NM NM 40.02 40.005 NM 40.001 40.01 F2416 4112008 6.92 2.200 12 340.58 1900 373 98 64 5.2 918 262 NM 170 NM NM 40.02 40.005 NM 40.001 40.01 F2416 6792008 7.17 2.440 17 347.70 2090 376 103 64 5.5 984 257 NM 179 NM NM 40.02 40.005 NM 40.001 40.01 F2416 6792008 7.17 2.440 17 347.70 2090 376 103 64 5.5 984 257 NM 179 NM NM 40.02 40.005 NM 40.001 40.01 F2416 2.572009 7.24 2.520 13 349.57 2.120 394 105 64 5.4 1060 2.55 NM 175 NM NM 40.02 40.005 NM 40.001 40.01 F2416 2.572009 7.24 2.520 13 349.57 2.120 394 105 64 5.4 1060 2.55 NM 175 NM NM 40.02 40.005 NM 40.001 40.01 F2416 4.672009 7.21 2.40 14 350.04 2.20 337 106 66 5.5 1080 2.57 NM 175 NM NM 40.02 40.005 NM 40.001 40.01 F2416 5.182009 7.21 2.70 16 352.55 2.120 406 109 66 5.5 1090 2.55 NM 181 NM NM 40.02 40.005 NM 40.001 40.01 F2416 5.182009 7.25 2.500 14 353.73 2.120 394 106 65 5.8 1090 2.55 NM 181 NM NM 40.02 40.005 NM 40.001 40.01 F2426 5.182008 4.05 5.550 16 173.66 4910 514 427 189 8.2 2.960 482 NM 55 NM NM NM 40.02 40.005 NM 40.001 40.01 F2444 5.142008 5.91 6.248 8 47.80 73.40 573 833 382 6.8 3620 1430 NM 55 NM 55 NM NM NM 40.007 NM 6.270 NM F2444 7.722008 3.97 2.9890 2.5 44.65 16200 73.00 60.07 73.00 73.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.0	<0.02 NM	<0.005 NM	NM	NM <0.00	02 <0.01
1.50 1.50		0.008 159,000	0.0012	5.990 0.011	
P241C		0.008 129.000 <0.005 <0.01	NM <0,0002	4.530 0.013 <0.03 0.005	
P241C 6292008 7.17 2.440 17 34770 2000 378 103 64 5.5 694 257 NM 170 NM NM 40.02 40.005 NM 40.001 40.01		<0.005 <0.01	<0.0002	<0.03 0.004	
F241C 10282008 7.20 2380 14 348.22 2040 381 99 60 4.8 1010 256 NM 182 NM NM <0.02 <0.005 NM <0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		<0.005 <0.01	0.0130	<0.03 0.006	
P241C		<0.005 <0.01	<0.0002	<0.03 0.004	
P241C S182099 7.21 2700 16 352.85 2120 406 109 66 5.8 1090 285 NM 181 NM NM <0.02 <0.005 NM <0.001 <0.01		<0.005 <0.01 <0.005 <0.01	NM NM	<0.03 0.005 <0.03 0.005	
P241C 197/2009 7.25 2500 14 353.73 2180 394 105 65 6.1 1090 254 NM 180 NM NM <0.02 <0.005 NM <0.001 <0.01 P242 8/19/2008 4.05 5250 16 173.66 4910 514 427 189 9.2 2960 482 NM <5 NM NM NM 0.007 NM 0.270 NM P243 5/14/2009 4.33 5000 15 173.63 5020 535 447 206 9.7 2340 537 NM <5 NM NM NM 0.007 NM 0.270 NM P244A 114/2006 5.01 8249 8 47.00 7340 573 833 382 6.8 3820 1430 NM 45 NM 178 26.48 0.005 NM 0.150 0.014 P244A 4/15/2008 3.97 26900 25 44.65 18200 1600 710 1780 11.0 4960 6750 NM 5 NM 920 75.00 <0.005 NM 0.190 0.019 P244A 7/2/2008 3.97 26900 25 44.65 16200 1600 710 1780 11.0 4960 6750 NM 5 NM 920 75.00 <0.005 NM 0.190 0.019 P244A 7/2/2008 4.44 15120 9 45.50 12000 1620 818 1760 8.6 2420 4890 NM 5 NM 5 NM 920 75.00 <0.005 NM 0.190 0.019 P244A 7/2/2008 4.44 15120 9 45.50 12000 1620 818 1760 8.6 2420 4890 NM 5 NM 5 NM 48 61.00 0.006 NM 0.190 0.013		<0.005 <0.01	NM	<0.03 0.005	
\$\frac{1}{2}\frac{2}{2}\frac{6}{192008} \qq \qq \qq		<0.005 <0.01	NM	<0.03 0.005	
P244A 11/4/2008 5.01 8249 8 47.80 7340 573 833 382 6.8 3620 1430 NM <5 NM 178 26.46 0.005 NM 0.150 0.014 P244A 41/52008 4.19 12180 13 45.05 8820 887 842 875 9.6 3150 2950 NM 5 NM 266 50.30 0.007 NM 0.155 0.088 P244A 77/2/2008 3.97 26800 25 44.65 16200 1600 710 1780 11.0 4890 6750 NM 5 NM 920 75.00 -0.005 NM 0.90 0.019 P244A 11/6/2008 4.44 15120 9 45.50 12000 1620 818 1780 8.6 2420 4580 NM <5 NM 920 75.00 0.006 NM 0.25 0.013		<0.005 NM	0.0003	NM 0.010	
P244A 4/15/2008 4.19 12180 13 45.05 88.20 807 842 875 9.8 3/150 2950 NM <\$ NM 266 50.30 0.007 NM 0.155 0.088 1/244A 77/2008 3.97 2950 0 25 44.65 16200 1600 7/10 1780 11.0 4960 6750 NM <\$ NM 920 75.00 <0.005 NM 0.190 0.190 0.190 1780 11.0 4960 NM <\$ NM 45 NM 494 81.00 0.006 NM 0.225 0.013		<0.005 NM <0.005 37.230	NM <0.0002	NM 0,012 1,570 0,004	
P244A 77:22008 3.97 26900 25 44.65 16200 1600 710 1780 11.0 4960 6750 NM <5 NM 920 75.00 <0.005 NM 0.190 0.019 P244A 11:6/2008 4.44 15:120 9 45:50 12000 1620 818 1760 8.6 2420 4580 NM <5 NM 494 81.00 0.006 NM 0.225 0.013		0.007 45.300	0.0018	1.660 0.006	
		0.011 32.300	0.0023	1.370 0.009	
		0.016 42.800	0.0031 NM	1.490 0.009 1.750 0.009	
F244A 219/2009 4.55 10620 10 46.53 8790 718 853 522 9.4 3120 2850 NM <5 NM 254 40.00 0.013 NM 0.190 0.048 CP244 4/3/2009 4.30 11090 6 45.43 9500 700 641 588 8.9 2890 2720 NM <5 NM 277 39.60 <0.020 NM 0.200 0.030 NM 0.200 0.030 CP34 (1972) 10 NM 0.200 0.030 NM 0.200 NM 0		0.009 40.600 0.006 43.900	NM NM	1.750 0.006 1.680 0.007	
		0.016 29.100	NM	1.160 0.008	8 3.660
P244A 10/30/2009 4.54 14500 9 49.65 19500 2680 551 2950 34.0 1390 9890 NM <5 NM 477 77.00 <0.005 NM 0.220 <0.01		0.020 21.800	NM	0.970 0.01	
P244B 1/14/2008 6.87 7600 12 49.52 5650 1080 273 382 9.4 1850 1570 NM 527 NM NM 0.03 <0.005 0.024 0.001 <0.01		<0.005 0.022 <0.005 0.013	NM	0.053 0.004 0.066 0.004	
		<0.005 0.013	NM	0.053 0.004	
72445 4/1/2008 6.89 7/170 14 48.68 5680 1040 270 398 6.3 1870 1460 NM 539 NM NM 40.02 <0.005 0.023 <0.001 <0.01	0.026 <0.02	<0.005 0.014	NM	0.080 0.004	4 0.045
P244B 5/9/2008 6.75 7410 14 48.45 5900 1030 257 339 8.2 1930 1490 NM 533 NM NM < <0.02 0.006 0.022 <0.001 <0.001		<0.005 0.011	NM	0.059 0.009	
F2448 05/2008 6.74 7520 14 46.43 5590 1100 272 371 6.6 1590 1490 NM 529 NM NM <0.02 <0.005 0.023 <0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0		<0.005 0.013 <0.005 0.016	NM NM	0.040 0.00	
		<0.005 0.015	NM	0.039 0.00	
P244B 9/2/2008 6.60 733 15 48.80 5940 1050 276 389 9.9 1960 1490 NM 523 NM NM < 0.02 < 0.005 0.024 0.001 < 0.01		<0.005 0.018	NM	0.240 0.00	
P244B 10/2/2008 6.65 7580 16 49.05 5800 995 257 348 6.8 2000 1540 NM 528 NM NM doi.org/10.002/e1.005-0.0023/e1.001		<0.005 0.017	NM	0.038 0.00	
F244B 11952008 6.78 7865 12 49.50 6180 1099 282 384 3.2 1800 1540 NM 524 NM NM < 0.02 0.006 0.024 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.		<0.005 0.021 <0.005 0.023	NM NM	0.038 0.00 0.062 0.00	
		<0.005 0.032	NM	0.045 0.00	
P244B 2/19/2009 7.12 8210 14 50.30 6690 1050 279 434 9.4 2200 1810 NM 499 NM NM <0.02 <0.005 0.024 <0.001 <0.01		<0.005 0.023	NM	0.053 0.00	
P244B 3/10/2009 6.78 7390 12 50.27 6020 1040 277 437 7.1 1960 1670 NM 511 NM NM Q.0.2 <0.005 0.022 <0.005 0.022 <0.001 <0.011 Q.0.011 <0.011 <0.011 Q.0.011 <a hre<="" td=""><td></td><td><0.005 0.020 <0.005 0.023</td><td>NM NM</td><td>0.054 0.00 0.045 NM</td><td></td>		<0.005 0.020 <0.005 0.023	NM NM	0.054 0.00 0.045 NM	
F244B 4/2/2009 6.99 7.740 13 50.13 6210 983 262 383 7.6 1950 1560 NM 520 NM NM COLO: October 1974 5/1/2009 6.99 7.750 15 40.27 5.770 992 259 380 8.9 1950 1570 NM 520 NM NM COLO: October 1974 5/1/2009 6.99 7.750 150 150 NM NM COLO: October 1974 13 50.13 6210 983 262 383 7.6 1950 1570 NM 520 NM NM NM COLO: October 1974 0.012 - 0.005 0.022 - 0.001 0.012 0.012		<0.005 0.023 <0.005 0.020	NM NM	0.045 NM 0.054 0.00	
17/448 37/2/009 6.99 7690 15 90.27 57/0 992 259 300 6.97 1990 1070 1971 320 1971 320 1971 320	<0.02 <0.02	<0.005 0.026	NM	<0.03 0.00	0.016
P244B 10/30/2009 6.78 7550 13 48.50 5990 1020 265 368 12.0 2040 1560 NM 505 NM NM < 0.02 < 0.005 0.022 0.001 < 0.01	<0.02 <0.02	<0.005 0.029	NM	0.039 0.00	
P244C 3/19/2008 6.97 4790 14 52,24 3640 716 166 171 9.8 1030 865 NM 447 NM NM <0.02 <0.005 0.053 0.001 <0.01		<0.005 <0.01 <0.005 <0.01	NM NM	0.037 0.00 0.038 0.00	
F244C 5192008 7.08 4800 14 51.35 3580 688 154 156 9.0 1200 882 NM 455 NM NM < 40.02 0.006 0.050 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0		<0.005 <0.01	NM	<0.03 0.00	
17/244C 95/2/2/05 7/1/2/06 461U 15 31/3/5 394U 1/23 166 166 5-3 12/2 07/5 1941 437 1941 1941 437 1941 1941 437 1941 1941 437 1941 1941 437 1941 1941 437 1941 1941 437 1941 1941 437 1941 1941 437 1941 1941 437 1941 1941 437 1941 1941 437 1941 1941 437 1941 1941 437 1941 1941 437 1941 1941 1941 1941 1941 1941 1941 194		<0.005 <0.01	NM	<0.03 0.00	3 <0.01
P244C 814/2008 7.00 4850 15 53.67 3750 701 163 169 9.6 1210 887 NM 471 NM NM <a 10.2009="" 1<="" doi.org="" href="https://doi.org/10.005/0.005</td><td></td><td><0.005 <0.01</td><td>NM</td><td><0.03 0.00</td><td></td></tr><tr><td>P244C 92/2008 6.79 463 15 52.89 3740 707 161 167 9.8 1140 877 NM 438 NM NM < 0.02 < 0.005 0.057 < 0.001 < 0.01 < 0.001 < 0.001</td><td></td><td>0.019 0.050
<0.005 <0.01</td><td>NM</td><td><0.03 0.00
<0.03 0.00</td><td></td></tr><tr><td>F244C 1072009 6.95 4850 16 52.89 3730 686 167 173 9.2 1270 887 NM 446 NM NM <td></td><td><0.005 <0.01</td><td>NM</td><td><0.03 0.00</td><td></td>		<0.005 <0.01	NM	<0.03 0.00	
		<0.005 <0.01	NM	0.041 0.00	3 <0.01
7-24C 1/13/2009 7.08 5120 13 54.22 4250 791 183 196 10.0 1400 890 NM 457 NM NM <0.02 <0.005 0.052 <0.001 <0.01	<0.02 <0.02	<0.005 <0.01	NM	<0.03 0.00	0.011
P244C 2/19/2009 7.10 5390 13 54.20 4340 793 181 174 9.8 1410 980 NM 478 NM NM <0.02 <0.005 0.054 <0.001 <0.01	<0.02 <0.02	<0.005 <0.01 <0.005 <0.01	NM NM	0.038 0.00	
F244C 3/10/2009 6.93 5000 11 54.07 3990 779 177 177 9.4 1390 982 NM 699 NM NM C0.02 C0.005 0.499 C0.001 C0.01 F244C 47/2009 7.02 5300 13 53.88 4130 7.20 169 167 9.5 1330 1101 NM 600 NM NM C0.02 C0.005 0.050 C0.001 C0.01	<0.02 <0.02	<0.005 <0.01 <0.005 <0.01	NM NM	0.036 0.00 0.033 NM	
	<0.02 <0.02				
P244C 7/24/2009 6.88 4770 17 51.07 3450 714 161 173 8.9 1200 876 NM 419 NM NM <0.02 <0.005 0.047 <0.001 <0.01		<0.005 <0.01	NM	0.041 0.00	
P244C 11/12/2009 6.89 5220 13 52.52 4000 777 164 162 9.3 1190 967 NM 446 NM NM <a.0.02 0.046="" <0.001="" <0.01<="" <a.0.005="" td=""><td><0.02 <0.02</td><td></td><td>NM NM NM</td><td></td><td>04 <0.01</td></a.0.02>	<0.02 <0.02		NM NM NM		04 <0.01

	1.75	pH	Cond	Temp	DTW	TDS	Ca-T	Mg-T	Na-T	К-Т	S04	CI-T	F.	Alk	Ag	Acidity	AI-D	As-D	Ba-D	Cd-D	Cr-D	Cu-D	Fe-D	Pb-D	Mn-D	Hg-T	Ni-D	Se-D Zn-
WELL P248A	DATE 2/28/2008	8U 4.22	uS/cm 2200	C 13	Feet 87,80	mg/l 1660	mg/l	mg/l	mg/l	mg/l	mg/l 902	mg/l 208	mg/l	mg/l as CaCO3	mg/l NM	mg/l as CaCO3	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l mg
P248A	5/12/2008	4,41	2220	13	87,91	1700	190	139	54	3,9	752	208	4.9	<5	NM	387 251	16.40	<0.005 <0.005	<0.01 <0.01	0.027	<0.01	6.760 6.760	<0.02	0.015	5.010 5.030	<0.0002 0.0005	0.355	0.002 3.08 0.002 3.31
P248A	7/11/2008	4.06	2140	16	88.02	1590	186	130	51	3.9	769	217	2.2	<5	NM	399	16.06	<0,005	<0.01	0.024	<0.01	6.890	<0.02	0.015	4.790	0.0009	0.309	0.002 3.59
P248A	12/11/2008	4.30	2170	12	88.24	1600	187	126	49	3.9	973	203	5.0	<5	NM	132	15.58	<0.005	<0.01	0.023	<0.01	6.440	<0.02	0.016	4.500	0.0004	0.360	0.003 3.29
P248A P248A	1/26/2009 5/28/2009	4.30 4.16	2190 2080	11	88.48 88.35	1650 1820	200 210	135 141	57 57	4.2	923 921	234 212	5,3 2,1	<5 <5	NM MM	135 163	15.20	<0.005	0.010	0.026	<0.01	5.910	0.03	0.015	4.730	NM	0.354	0.004 3.11
P248A	8/4/2009	4.01	2130	15	88,70	1570	203	136	56	4.0	945	226	4.5	<5	NM	159	16.10	<0.005	<0.01 <0.01	0.024	<0.01 <0.01	6.090	0.03 <0.02	0.014	4.440 4.410	NM NM	0.310	0.002 3.00
P248A	12/14/2009	4.42	2140	12	87.95	1600	195	136	63	4.1	965	227	6.7	<5	NM	150	17.65	<0.005	<0.01	0.023	<0.01	6,540	<0.02	0.014	4,870	NM	0.310	0.003 3.35
P248B	2/22/2008	6.26	252	12	87.99	3140	407	244	60	8.5	1960	120	NM	130	NM	26	0.85	<0.005	0.013	0.042	<0.01	1.580	<0.02	<0.005	11,530	<0.0002	0.469	<0.002 4.14
P248B P248B	7/11/2008 1/26/2009	6.09	3110 2980	16	88,30 88,88	2930 2790	408 403	225 227	58 60	9.0	1890 1800	119 123	NM NM	138 143	NM NM	196	0.86	<0.005	0.013	0,032	<0.01	1,930	<0.02	<0.005	8,020	<0.0002	0.331	<0.002 3.26
P248B	8/4/2009	6.59	2990	19	89.11	2790	398	229	64	9.0	1740	123	NM NM	161	NM NM	151 10	<0.02	<0.005	0.013	0.029	<0.01 <0.01	0.800	<0.03	<0.005	7.460 0.027	NM NM	0.346 <0.03	0.002 2.69 <0.002 0.15
P248C	2/28/2008	6.52	1337	14	84.24	886	149	61	36	3.4	401	128	NM	128	NM	NM	0.04	<0.005	0.016	0.002	<0.01	0.173	<0.02	<0.005	0.029	<0.0002	<0.03	<0.002 0.17
P248C	7/11/2008	6.51	1309	15	84.55	966	150	59	34	3.3	414	128	NM	130	NM	NM	<0.02	<0.005	0.016	0.002	<0.01	0.142	<0.02	<0.005	0.031	0.0008	< 0.03	<0.002 0.16
P248C P248C	1/26/2009 8/4/2009	6.60	1328 1312	11	85.08 85.38	910 940	153 165	61	35 37	3.5	417 407	136	NM NM	129	NM NM	NM NM	<0.02 NM	<0,005 NM	0.018 NM	0,002 NM	<0.01 NM	0.150	<0.02	<0.005	0.031	NM	<0.03	<0.002 0.17
P253A	11/25/2008	7.16	2350	14	80.21	1860	230	94	208	3.4 5.1	768	135 231	NM NM	162 340	NM NM	NM NM	NM	<0.005	NM NM	<0.001	NM NM	NM <0.02	NM NM	NM <0.005	NM NM	NM NM	NM NM	NM NM 0.005 <0.0
P255A	10/23/2008	6.97	1123	13	39.35	676	96	28	88	3.1	196	154	NM	193	NM	NM	NM	0.046	NM	<0.001	NM	0.033	NM	<0.005	NM	NM	NM	0.002 <0.0
P256	6/3/2008	6,81	2600	14	50.83	2030	370	112	66	4.1	937	192	NM	398	NM	NM	NM	<0,005	NM	<0.001	NM	<0.02	NM	<0.005	NM	NM	NM	0.007 <0.0
P258A P259	9/5/2008 6/17/2008	6.82 7.00	2980 1839	15 18	NM 169.87	2320 1160	303	116	244	6.2	1170	339	NM	228	NM	NM	NM	0.006	NM	<0.001	NM	<0.02	NM	<0.005	NM	NM	NM	0.017 0.01
P259 P264	5/15/2009	5.90	1839 4370	15	400.04	1160 4990	128 411	50 588	178 73	7.6 5.5	272 3290	284 124	NM NM	228 85	NM	NM NM	NM 1.18	0.005	NM 0.012	<0.001	NM <0.01	<0.02 <0.02	NM 0.07	<0.005 <0.005	NM 91,700	NM NM	NM MU	<0.002 <0.0 NM 0.05
P267B	12/16/2008	7.19	1633	12	212.87	1130	218	58	48	4.3	244	317	NM	238	NM	NM	NM	<0.005	0.012	<0.001	<0.01	<0.02	NM	<0.005	91.700 NM	NM	NM	0.003 <0.0
P272	4/17/2008	7.54	3830	13	78.96	3310	563	154	193	12,0	1730	281	NM	459	NM	NM	NM	0.009	0.023	<0.001	<0.01	0.028	NM	<0.005	NM	NM	NM	<0.002 0.01
P272	11/24/2008	6,61	3720	13	62.55	3380	599	156	192	12.0	1660	311	NM	461	NM	NM	NM	<0.005	0.028	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	<0.002 0.01
P272 P272	5/26/2009 11/24/2009	7.58 6.59	3930 4260	15	79.50 79.95	3470 3490	637 590	166 157	193 189	12,0 13.0	1680 1800	314 366	NM NM	460 506	NM NM	NM NM	NM NM	<0.005	0.026	<0.001	<0.01	<0.02	NM NM	<0.005	NM NM	NM NM	NM	<0.002 <0.0
P273	6/3/2008	6.73	3780	14	302.43	2950	593	177	75	5.1	1510	553	NM NM	160	NM	NM NM	<0.02	<0.005	0.026	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	NM <0.03	<0.002 <0.0 0.004 <0.0
P273	8/28/2009	6.98	3670	17	307.08	2890	570	173	81	5.4	1120	745	NM	144	NM	NM	<0.02	<0.005	0.021	<0.001	< 0.01	<0.02	<0.02	<0.005	< 0.01	NM	< 0.03	0.005 <0.0
P277	5/22/2008	7.14	3160	15	379.73	2760	480	146	90	5.1	1720	187	NM	211	NM	NM	<0.02	<0.005	0.016	<0.001	<0.01	<0.02	0.08	<0.005	<0.01	<0.0002	< 0.03	0.004 <0.0
P277 P277	7/16/2008 7/22/2009	6.92 7.05	3310 2640	16 20	380.95 388,21	3000 2410	501 415	147	85 85	4.4 3.5	1640 1360	185	NM NM	207	NM NM	NM NM	0.04 <0.02	<0.005	0.016	<0.001	<0.01	<0.02	<0.02	<0.005	0.014	0.0005	<0.03	0.004 0.01
SRG946	1/9/2008	3.41	13630	13	99.68	24700	418	125 2610	215	4.4	16800	229 190	NM NM	186	NM NM	5910	<0,02 955,00	<0,005 0,026	0,014 NM	<0,001 0,490	<0.01 0.056	<0.02 740.000	<0.02 43.94	<0,005	<0,01 225,000	NM 0.0004	<0.03 12.100	0.004 <0.0
SRG946	1/5/2009	3.54	13030	11	124.18	24600	407	2630	196	5.0	18600	171	NM	<5	NM	6370	953,00	0.015	NM	0.460	0.060	63.300	47.10	<0,005	211,000	NM	11,500	0.032 72.30
SRG946	4/20/2009	3.49	14140	15	123.43	23700	435	2650	215	5.4	17700	185	NM	<5	NM	6230	900.00	0.033	NM	0.500	0.069	62.700	36.70	<0.005	209.000	NM	11.160	0.027 67.70
W185 W185	7/2/2008 11/20/2009	7.06 7.03	1194 1009	18 11	135.00 135.00	986 652	171 119	45	47	2.2	401	89 178	NM NM	275	NM	NM	NM	<0.005	NM	<0.001	NM	<0.02	NM	< 0.005	NM	NM	NM	0,002 0.04
W189	1/16/2008	7.03	908	14	200.00	516	84	30	38	6.1 2.8	96	178	0.1	198	NM MIA	NM NM	NM NM	<0.005 0.006	NM 0.061	<0.001	NM NM	0.069 <0.02	NM NM	<0.005 <0.005	NM NM	NM <0.0002	NM NM	0,002 0.07 <0,002 0.09
W189	7/21/2008	7.09	939	20	200.00	594	85	33	40	2.9	105	123	0.2	171	NM	NM	NM	0.007	0.093	<0.001	NM	<0.02	NM	<0.005	NM	<0.0002	NM	<0.002 0.08
W189	7/21/2009	6,77	846	20	200.00	478	88	33	42	2.4	93	122	0.1	164	NM	NM	NM	<0.005	0.056	<0.001	NM	<0.02	NM	<0.005	NM	NM	NM	<0.002 0.13
W22 W22	2/11/2008 6/27/2008	7.40 7.06	1416 1419	15	NM NM	856 944	165 161	49	48 45	4.9	235	156 160	NM	289 286	NM	NM NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	< 0.005	<0.01	NM	<0.03	0.002 0.01
W22	9/23/2008	7.06	1331	13	NM	900	160	47	47	4.3	224	153	0.2 NM	280	<0.001	NM NM	0.04 <0.02	<0.005 <0.005	NM NM	<0.001	<0.01 <0.01	<0.02 <0.02	<0.02 NM	<0.005 <0.005	<0.01	NM NM	<0.03 <0.03	0.002 <0.0
W22	12/16/2008	7.32	1278	12	NM	874	168	47	43	4.5	245	160	NM	287	<0.001	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.002 <0.0
W22	3/25/2009	7.43	1344	12	31.00	896	164	46	42	4.4	232	169	NM	283	0.002	NM	<0.02	<0.005	NM	<0.001	< 0.01	<0.02	<0.02	<0.005	< 0.01	NM	< 0.03	0.003 0.01
W22 W22	6/25/2009	6.93	1272	15	31.00	938	166	49	49	4,7	214	167	NM	284	<0.001	NM	<0.02	<0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0.002 <0.0
W22	9/28/2009	6.90 7.31	1319 1372	14	31,00 31.00	854 840	153	50	44	4.6 5.3	218 231	162 167	NM NM	284 289	<0.001	NM NM	<0.02	0.005	NM NM	<0.001	<0.01 <0.01	<0.02	<0.02	<0.005 <0.005	<0.01 <0.01	NM NM	<0.03	0.002 <0.0
W363	6/30/2008	7.02	1002	17	NM	630	96	34	40	2.8	124	158	NM	159	NM	NM	<0.02	0.007	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	0.002 <0.0
W363	9/25/2008	7.50	1024	15	NM	618	100	36	45	3.5	126	150	NM	160	<0.001	NM	<0.02	0.006	NM	<0,001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	0.003 0.01
W363	6/30/2009	6.97	1024	17	184.00	602	96	36	44	3.0	114	160	NM	161	NM	NM	<0.02	0.010	NM	<0.001	<0.01	<0.02	<0.02	<0.005	< 0.01	NM	< 0.03	0.003 0.01
W363 W387	9/24/2009 6/30/2008	7.24 6.98	930 1133	17	184.00 NM	564 730	90 109	33 35	40 52	3.1 2.6	112 54	161 238	NM NM	155 157	NM <0.001	NM NM	<0.02	0.011	NM NM	<0.001	<0.01 <0.01	<0.02	<0.02 <0.02	<0.005	<0.01	NM <0.0002	<0.03	0.002 0.01 NM <0.0
W387	10/1/2008	7.34	1110	18	NM	642	94	33	47	2.9	49	208	NM	162	NM	NM	<0.02	0.008	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	NM <0.0
W408	12/2/2008	7.23	1311	8	220.00	850	160	47	46	4.5	231	166	NM	284	NM	NM	NM	<0.005	NM	<0.001	NM	0.025	NM	<0.005	NM	NM	NM	0.002 0.04
W408 W412	9/18/2009 9/22/2008	6.82	1221 971	21	220,00 NM	836 596	157 92	47 25	48	4.6	235	175	NM	287	NM	NM	NM	0,011	NM	<0.001	NM	0.025	NM	<0.005	NM	NM	NM	NM 0.03
W412 W41A	9/22/2008	6.91	1150	9	NM NM	596 716	118	25 50	62 46	2.8	81 219	139 79	NM 0.3	207 293	NM	NM NM	NM	NM <0.005	0.110 NM	NM <0.001	<0.01 NM	NM <0.02	NM NM	NM <0.005	NM NM	NM NM	NM	NM NM <0.002 0.12
W41A	6/27/2008	6.73	1648	20	NM	1100	165	64	69	2.9	277	200	0.3	305	NM	NM	NM	<0.005	NM	<0.001	NM	<0.02	NM	<0.005	NM	NM	NM	0.002 0.12
W41A	9/23/2008	7.08	1347	22	NM	920	146	56	59	3.1	258	120	0.2	311	NM	NM	NM	<0.005	NM	<0.001	NM	<0.02	NM	<0.005	NM	NM	NM	0.004 0.12
W41A	12/16/2008	6.91	1172	10	NM	800	134	52	47	2.8	262	101	0,3	319	NM	NM	NM	<0.005	NM	<0.001	NM	<0.02	NM	<0.005	NM	NM	NM	0.002 0.07
W41A W41A	3/25/2009 6/25/2009	6.98	1340 1683	16	13,00 13,00	920 1250	155 177	53 67	52 113	2.7 3.7	257 264	138 297	0.8	299 298	NM NM	NM NM	NM MM	<0.005	NM MM	<0.001 <0.001	NM NM	<0.02	NM NM	<0.005	NM NM	NM NM	NM NM	0.003 0.08
W41A	9/28/2009	7.11	1271	21	13.00	854	133	50	65	3.7	249	125	0.3	298	NM NM	NM NM	NM NM	<0.005	NM NM	<0,001	NM NM	<0.02	NM NM	<0.005	NM NM	NM NM	NM NM	0.004 0.13 0.002 0.04
W41A	12/23/2009	6,80	1185	6	13.00	750	123	51	63	3.2	223	104	0.3	318	NM	NM	NM	<0.005	NM	<0.001	NM	<0.02	NM	<0.005	NM	NM	NM	0.002 0.07
		7.15	1222	17	0.00	738	109	42	58	3.9	37	259	NM	151	NM	NM	NM	0.009	0.140	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	NM <0.0
W420	6/30/2009		1120	13	0.00 331.72	686	101	39	50	3.9	37	265	NM	153	NM	NM	NM	0.010	0.150	<0.001	<0.01	<0.02	NM	<0.005	NM	NM	NM	0.003 0.03
W420	9/24/2009	7.25	1224			924	160	52	47	3.5	367 369	138	0,2	159	MM	NM NM	<0.02 <0.02	0.009	0.024	<0.001	<0.01	<0.02 <0.02	<0.02	<0.005	<0.01	<0.0002	<0.03 <0.03	0.002 <0.0
		7.25 7.18 7.45	1334 1405	13	330.92	960									NM	NM	<0.02	<0.005	0.027	<0.001				~0.000	70.01			
W420 WJG1154A	9/24/2009 1/22/2008	7.18 7.45 7.22				960 780	159	46	47	3.4	275	116	0.2	153							<0.01	< 0.02	< 0.02	< 0.005	< 0.01	<0.0002	< 0.03	0.002 <0.0
W420 WJG1154A WJG1154A WJG1154A WJG1154A	9/24/2009 1/22/2008 4/7/2008 4/23/2008 7/1/2008	7.18 7.45 7.22 7.02	1405 1159 1303	14 15 18	330.92 330.63 336.28	780 952	135 149	46 49	44	3.0	352	150	0.2	155	NM	NM	<0.02	0.008	0.028	<0.001	<0.01	<0.02	<0.02 <0.02	<0.005 <0.005	0.043	<0.0002 <0.0002	<0.03 <0.03	0.002 <0.0 0.002 0.01
W420 WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A	9/24/2009 1/22/2008 4/7/2008 4/23/2008 7/1/2008 11/13/2008	7.18 7.45 7.22 7.02 7.44	1405 1159 1303 1272	14 15 18 15	330.92 330.63 336.28 341.30	780 952 880	135 149 153	46 49 51	44 50	3.0	352 384	150 136	0.2	155 162	NM NM	NM NM	<0.02 <0.02	0.008	0.028 0.025	<0.001	<0.01	<0.02 <0.02	<0.02 <0.02	<0.005 <0.005	0.043	<0.0002 <0.0002	<0.03 <0.03	0.002 0.01 0.002 <0.0
W420 WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A	9/24/2009 1/22/2008 4/7/2008 4/23/2008 7/1/2008 11/13/2008 1/22/2009	7.18 7.45 7.22 7.02 7.44 7.27	1405 1159 1303 1272 1309	14 15 18 15 14	330.92 330.63 336.28 341.30 338.63	780 952 880 840	135 149 153 153	46 49 51 52	44 50 48	3.0 3.2 3,5	352 384 362	150 136 140	0.2 0.2 0.2	155 162 157	NM NM NM	NM NM NM	<0.02 <0.02 <0.02	0.008 0.008 0.008	0.028 0.025 0.025	<0.001 <0.001 <0.001	<0.01 <0.01 <0.01	<0.02 <0.02 <0.02	<0.02 <0.02 <0.02	<0.005 <0.005 <0.005	0.043 <0.01 <0.01	<0.0002 <0.0002 NM	<0.03 <0.03 <0.03	0.002 0.01 0.002 <0.0 0.003 <0.0
W420 WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A	9/24/2009 1/22/2008 4/7/2008 4/23/2008 7/1/2008 11/13/2008 1/22/2009 4/3/2009	7.18 7.45 7.22 7.02 7.44 7.27 7.28	1405 1159 1303 1272 1309 1267	14 15 18 15 14 14	330.92 330.63 336.28 341.30 338.63 335.37	780 952 880 840 880	135 149 153 153 143	46 49 51 52 46	44 50 48 45	3.0 3.2 3.5 3.3	352 384 362 313	150 136 140 143	0.2 0.2 0.2 0.2	155 162 157 156	NM NM NM	NM NM NM	<0.02 <0.02 <0.02 <0.02	0.008 0.008 0.008 0.008	0.028 0.025 0.025 0.024	<0.001 <0.001 <0.001 <0.001	<0.01 <0.01 <0.01 <0.01	<0.02 <0.02 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02	<0.005 <0.005 <0.005 <0.005	0.043 <0.01 <0.01 <0.01	<0.0002 <0.0002 NM NM	<0.03 <0.03 <0.03 <0.03	0.002 0.01 0.002 <0.0 0.003 <0.0 0.003 <0.0
W420 WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A	9/24/2009 1/22/2008 4/7/2008 4/23/2008 7/1/2008 11/13/2008 1/22/2009	7.18 7.45 7.22 7.02 7.44 7.27	1405 1159 1303 1272 1309	14 15 18 15 14	330.92 330.63 336.28 341.30 338.63	780 952 880 840	135 149 153 153	46 49 51 52	44 50 48	3.0 3.2 3,5	352 384 362	150 136 140	0.2 0.2 0.2	155 162 157	NM NM NM	NM NM NM	<0.02 <0.02 <0.02	0.008 0.008 0.008	0.028 0.025 0.025 0.024 0.025	<0.001 <0.001 <0.001 <0.001 <0.001	<0.01 <0.01 <0.01 <0.01 <0.01	<0.02 <0.02 <0.02 <0.02 <0.02	<0.02 <0.02 <0.02	<0.005 <0.005 <0.005	0.043 <0.01 <0.01	<0.0002 <0.0002 NM	<0.03 <0.03 <0.03 <0.03 <0.03	0.002 0.01 0.002 <0.0 0.003 <0.0 0.003 <0.0 0.003 <0.0
W420 WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A	9/24/2009 1/22/2008 4/7/2008 4/7/2008 7/1/2008 11/13/2008 1/22/2009 4/3/2009 7/28/2009 10/13/2009 7/1/2008	7.18 7.45 7.22 7.02 7.44 7.27 7.28 7.01 7.55 7.16	1405 1159 1303 1272 1309 1267 1244 1229 1203	14 15 18 15 14 14 14 18 16	330.92 330.63 336.28 341.30 338.63 335.37 341.31 344.80 336.42	780 952 880 840 880 848 844 896	135 149 153 153 143 145 146 135	46 49 51 52 46 48 50 45	44 50 48 45 46 48 43	3.0 3.2 3.5 3.3 3.0 3.7 3.2	352 384 362 313 292 312 329	150 136 140 143 144 139	0.2 0.2 0.2 0.2 0.2 0.2 0.2 NM	155 162 157 156 150 159 153	NM NM NM NM NM NM	NIM NIM NIM NIM NIM NIM NIM	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 NM	0.008 0.008 0.008 0.008 0.008 0.008 0.009 <0.005	0.028 0.025 0.025 0.024 0.025 0.024 NM	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 NM	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 NM	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.043 <0.01 <0.01 <0.01 <0.01 <0.01 NM	<0.0002 <0.0002 NM NM NM NM NM	<0.03 <0.03 <0.03 <0.03 <0.03 <0.03 NM	0.002 0.01 0.002 <0.0 0.003 <0.0 0.003 <0.0 0.003 <0.0 0.002 0.11 0.002 <0.0
W420 WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A WJG1154A	9/24/2009 1/22/2008 4/7/2008 4/7/2008 11/13/2008 11/13/2008 1/22/2009 1/28/2009 10/13/2009	7.18 7.45 7.22 7.02 7.44 7.27 7.28 7.01 7.55	1405 1159 1303 1272 1309 1267 1244 1229	14 15 18 15 14 14 14 18	330.92 330.63 336.28 341.30 338.63 335.37 341.31 344.80	780 952 880 840 880 848 848	135 149 153 153 143 145 146	46 49 51 52 46 48 50	44 50 48 45 46 48	3.0 3.2 3.5 3.3 3.0 3.7	352 384 362 313 292 312	150 136 140 143 144 139	0.2 0.2 0.2 0.2 0.2 0.2	155 162 157 156 150 159	NM NM NM NM NM	NM NM NM NM	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	0.008 0.008 0.008 0.008 0.008 0.009	0.028 0.025 0.025 0.024 0.025 0.024	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.043 <0.01 <0.01 <0.01 <0.01 <0.01	<0.0002 <0.0002 NM NM NM NM	<0.03 <0.03 <0.03 <0.03 <0.03 <0.03	0.002 0.01 0.002 <0.0 0.003 <0.0 0.003 <0.0 0.003 <0.0 0.003 <0.0

		pH	Cond	Temp	DTW	TDS	Ca-T	Mg-T	Na-T	K-T	S04	CI-T	F	Alk	Ag	Acidity	AI-D	As-D	Ba-D	Cd-D	Cr-D	Cu-D	Fe-D	Pb-D	Mn-D	Hg-T	Ni-D	Se-D	Zn-D
WELL	DATE	su	uS/cm	С	Feet	mg/l as CaCO3	mg/l	mg/l as CaCO3	mg/l	mg/l	mg/l	mg/l	mg/I	mg/l	mg/i	mg/i	mg/i	mg/i	mg/i	mg/i	mg/i								
WJG1154C	4/23/2008	7.19	831	15	360.58	496	73	30	55	3.2	102	88	NM	183	NM	NM	<0.02	0.012	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	0.004	<0.01
WJG1154C	10/6/2008	7.38	758	16	344.08	480	64	25	48	2.8	105	89	NM	177	NM	NM	<0.02	0.013	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	<0.002	0.020
WJG1154C	1/20/2009	7.47	821	16	338,75	474	76	30	53	3.4	125	90	NM	179	NM	NM	<0.02	0.012	NM	< 0.001	< 0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.002	<0.01
WJG1154C	7/30/2009	7.28	745	19	342.34	474	71	27	48	2.9	102	90	NM	176	NM	NM	<0.02	0.011	NM	< 0.001	< 0.01	<0.02	< 0.02	<0.005	< 0.01	NM	<0.03	<0.002	<0.01
WJG1169A	1/2/2008	7.12	2220	12	407.73	1720	311	86	103	4.3	467	449	0.1	184	NM	NM	<0.02	< 0.005	0.023	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	0,004	0.013
WJG1169A	6/20/2008	7.17	2470	18	409.93	1750	298	80	96	4.0	459	482	NM	181	NM	NM	<0.02	0.006	0.023	< 0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	< 0.03	0.003	<0.01
WJG1169A	7/22/2008	6.85	2350	17	410.50	1910	314	85	103	4.2	488	471	0.1	191	NM	NM	<0.02	< 0.005	0.021	<0.001	<0.01	<0.02	<0.02	< 0.005	<0.01	<0.0002	< 0.03	0.003	0.011
WJG1169B	7/25/2008	6.97	2140	17	410.28	1710	286	89	89	3.9	455	393	0.1	171	NM	NM	< 0.02	< 0.005	NM	< 0.001	<0.01	<0.02	<0.02	< 0.005	<0.01	<0.0002	< 0.03	0.003	0.014
WJG1169B	4/7/2009	7 17	2140	14	416.66	1600	271	80	78	3.7	507	390	0.1	173	NM	NM	<0.02	<0.005	0.026	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.004	<0.01
WJG1169B	7/29/2009	7.23	2190	16	16.50	1600	275	81	79	3.8	463	376	0.1	166	NM	NM	0.03	0.006	0,026	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	0.004	<0.01
WJG1170B	5/19/2008	7.18	1129	18	389.11	742	124	43	43	4.6	260	113	NM	144	NM	NM	<0.02	0.011	NM	< 0.001	<0.01	<0.02	<0.02	<0.005	<0.01	<0.0002	<0.03	0.002	0.010
	5/7/2009	7.43	1056	16	391.04	704	122	40	44	4.8	330	117	NM	146	NM	NM	<0.02	0.012	NM	<0.001	< 0.01	<0.02	NM	<0,005	< 0.01	NM	< 0.03	NM	<0.01
WJG1170B		7.43		16		794	104	70	29	2.6	177	116	NM	152	NM	NM	<0.02	0.006	NM	< 0.001	<0.01	< 0.02	<0.02	< 0.005	< 0.01	< 0.0002	< 0.03	0.002	<0.01
WJG1171A	6/6/2008	7.17	954	16	314.12	614	104	36	30		477	110						0.007	NM	0.002	<0.01	<0.02	<0.02	< 0.005	<0.01	NM	<0.03	<0.002	0.018
WJG1171A	11/4/2008	7.50	942	13	320.64	600	114	36	40	2.7	177	112	NM	155	NM	NM	<0.02					~0.02			-		.0.00		
WJG1171A	7/20/2009	7.28	927	18	323.69	680	107	35	38	2.2	172	114	NM	151	MM	NM	<0.02	0.005	NM	<0.001	<0.01	<0.02	<0.02	<0.005	<0.01	NM	<0.03	<0,002	<0.01

Appendix B

Groundwater Level Monitoring Data

Table B-1 Water Elevation Data 1996, 2003-2009

Well	Sept 1996	April 2003	Sept 2003	April 2004	Sept 2004	April 2005	Sept 2005	April 2006	Sept 2006	April 2007	Sept 2007	Sept 2008	Sept 2009
ABC01	5248.52	5247.67	5246.12	5245.22	5244.5	5244.31	5244.44	5245.30	5245.40	5245.18	5244.50	5243.13	5242.30
ABC02	5154.91	5150.22	5149.94	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	5141.92
ABC03	4525.27	4519.87	4519.23	4518.16	4517.67	4517.04	4516.67	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED
ABC04	5147.90	5146.69	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	5138.62	5137.95
ABC04A	5170.00	5153.68	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED
ABC05	4734.26	NM	4702.51	4694.36	4687.92	4681.10	4676.73	4673.73	4670.48	4671.15	4687.92	4658.38*	4652.92
ABC06	5016.32	5041.58	5045.02	5035.31	5010.05	5026.24	5034.36	5028.81	5017.41	5022.52	5010.05	4992.78	4967.48
ABC07	5252.31	5250.12	5248.79	5247.95	5247.21	5247.21	5247.46	5248.97	5248.53	5248.11	5247.21	5246.09	5245.49
ABC08	4602.38	4590.58	4597.64	4590.38	4595.73	4589.81	4594.53	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED	ABANDONED
B1G1120A	4830.22	4811.64	4809.02	4806.25	4805.52	4801.96	4799.65	4796.60	4794.77	4792.25	4805.52	4784.63	4787.69
B1G1120B	4831.46	NM	4810.32	NM	4806.6	NM	4802.44	NM	4796.97	NM	4806.60	4786.42	4780.23
B1G1120C	4832.13	NM	4810.83	NM	4807.25	NM	4802.29	NM	4796.47	NM	4807.25	4786.25	4780.24
B1G951	5177.92	5176.07	5175.75	5176.23	5174.98	5175.38	5175.76	5176.54	5176.42	5176.32	5174.98	5174.45	5174.33
B2G1157A	4621.07	4589.2	4581.33	4587.25	4582.16	4593.45	4581.24	4589.70	4574.63	4576.30	4582.16	4559.90	DRY
B2G1157B	4622.82	NM	4579.43	NM	4579.96	4593.77	4579.69	NM	4573.06	NM	4579.96	4561.76	4560.16
B2G1157C	4622.17	NM	4578.62	NM	4577.67	4593.81	4576.53	NM	4570.82	NM	4577.67	4558.22	4556.49
B2G1176A	Not Drilled Yet	4704.75	4701.96	4694.05	4688.11	4680.45	4675.77	4672.95	4669.74	4669.39	4688.11	4658.72	4651.68
B2G1176B	Not Drilled Yet	NM	4702.55	NM	4688.61	NM	4676.21	NM	4670.16	NM	4688.61	4659.00	4651.94
B2G1176C	Not Drilled Yet	NM	4702.96	NM	4689.05	NM	4676.73	NM	4670.63	NM	4689.05	4658.62	4652.74
B2G1193	Not Drilled Yet	NM	NM	NM	4569.09	NM	4561.20	NM	NM	NM	NM	NM	4539.47
B2G1194A	Not Drilled Yet	4593.7	NM	4591.05	4583.64	4591.82	4586.89	4588.99	4579.44	4582.17	4583.64	4568.85	4566.88
B2G1194B	Not Drilled Yet	NM	NM	NM	4583.58	NM	4586.96	NM	4579.35	NM	4583.58	4568.71	4566.71
B3G1197A	Not Drilled Yet	4599.66	NM	4595.29	4589.76	4592.71	4592.19	4592.28	4585.27	4582.17	4589.76	4575.30	4572.75
B3G1197B	Not Drilled Yet	NM	NM	NM	4591.46	NM	4592.33	NM	4585.22	NM	4591.46	4575.27	4572.69
B3G1197C	Not Drilled Yet	NM	NM	NM	4592.13	NM	4592.64	NM	4585.28	NM	4592.13	4575.27	4572.75
BFG1136A	4730.71	4703.85	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
BFG1136B	4730.90	NM	4700.43	4692.68	4686.48	4679.31	4673.10	4671.40	4668.49	4667.37	4686.48	4657.68	4651.18
BFG1136C	4731.37	NM	4700.65	NM	4686.72	NM	4673.52	NM	4668.93	NM	4686.72	4657.85	4651.38
BFG1155B	4613.77	4588.84	4579.31	4586.89	4579.02	4590.83	4582.20	4587.73	4573.71	4577.55	4579.02	4562.98	DRY
BFG1155C	4611.01	NM	4578.26	NM	4578.01	NM	4581.20	NM	4572.84	NM	4578.01	4562.51	4561.84
BFG1155D	4619.46	NM	4577.9	NM	4577.65	NM	4580.98	NM	4572.46	NM	4577.65	4561.05	4559.81
BFG1155E	4619.50	NM	4578.75	NM	4578.23	NM	4581.38	NM	4572.46	NM	4578.23	4560.38	4557.77
BFG1155F	4619.79	NM	4578.8	NM	4578.41	NM	4581.62	NM	4573.03	NM	4578.41	4561.21	4558.58
BFG1156A	4619.72	4590.22	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
BFG1156B	4619.55	NM	4581.97	4588.38	4581.61	4591.63	4583.61	4588.40	4575.12	4578.71	4581.61	4564.81	4562.99
BFG1156C	4620.78	NM	4583.05	NM	4582.8	NM	4584.57	NM	4577.04	NM	4582.80	4565.97	4564.17
BFG1156D	4620.10	NM	4582.63	NM	4582.31	NM	4584.29	NM	4576.57	NM	4582.31	4565.48	4563.70
BFG1156E	4620.28	NM	4583.48	NM	4583.57	NM	4587.43	NM	4579.44	NM	4583.57	4568.12	4563.78
BFG1156F	4620.36	NM	4583.14	NM	4582.12	NM	4584,63	NM	4576.99	NM	4582.12	4565.87	4564.05
BFG1168A	4733.15	4706.44	4702.81	4695.09	4688.86	4681.50	4674.70	4673.54	4670.60	4669.39	4688.86	4659.89	4652.84
BFG1168B	4733.44	NM	4703.16	NM	4689.2	NM	4674.98	NM	4670.96	NM	4689.20	4660.21	4653.20
BFG1168C	4733.62	NM	4703.10	NM	4689.33	NM	4675.03	NM	4671.16	NM	4689.33	4660.43	4653.40
BFG1195A	Not Drilled Yet	4589.97	4581.35	4588.13	4581.37	4592.33	4582.67	4588.68	4575.18	4577.84	4581.37	4563.86	4562.18
BFG1195A BFG1195B	Not Drilled Yet	NM	4581.59	NM	4581.54	NM	4582.78	NM	4575.42	NM	4581.54	4564.04	4562.30
BFG1193B BFG1198A	Not Drilled Yet	4706.08	4702.33	NM	4688.36	4681.08	4674.26	4673.20	4670.30	4669.15	4688.36	4659.57	DRY
	Not Drilled Yet	NM	4702.51	NM	4688.59	NM	4674.50	NM	4670.48	NM	4688.59	4659.69	4652.80
BFG1198B		NM	4702.51	NM	4688.78	NM	4674.65	NM	4670.69	NM	4688.78	4659.99	4653.12
BFG1198C	Not Drilled Yet	NM	4702.64 NM	4548.55	NM	NM	4513.14	NM	NM	NM	NM	NM	4400.91
BFG1200	4487.25 5580.55	NM	5569.4	5568.59	5569.37	5569.77	5574.47	5575.15	5573.09	5577.55	5569.37	5572.09	5571.03
BRG286	5349.53	NM	5340.96	5339.96	5338.55	5337.82	5342.95	5343.30	5346.26	5345.12	5338.55	5338.31	5335.59

Well	Sept 1996	April 2003	Sept 2003	April 2004	Sept 2004	April 2005	Sept 2005	April 2006	Sept 2006	April 2007	Sept 2007	Sept 2008	Sept 2009
BRG288	5346.60	5345.96	5344.95	5344.1	5344.25	5345.49	5349.68	5351.59	5356.01	5356.54	5353.52	5348.54	5353.83
BRG289	5346.41	5345.62	5344.62	5343.85	5343.95	5345.36	5349.66	5351.35	5356.09	5356.30	5353.21	5347.41	5353.87
BRG290	5317.73	5314.51	5313.12	5311.35	5310.62	5309.98	5312.23	5313.56	5315.36	5315.87	5310.62	5311.18	5310.65
BRG291A	5538.33	5527.34	5525.41	5526.98	5527.72	5529.84	5532.22	5531.90	5532.95	5529.22	5527.72	5524.38	5525.43
BRG919	5602.87	5599.41	5598.44	5600.17	5601.05	5602.36	5603.19	5602.81	5603.83	5602.00	5601.05	5601.01	5602.06
BRG920	5540.63	5530.2	5528.3	5536.44	5534.55	5544.54	5540.83	5543.55	5540.08	5533.91	5534.55	5531.25	5534.53
BRG921	5333.68	5324.81	5322.75	5320.58	5317.59	5316.60	5318.39	5319.26	5320.74	5320.68	5317.59	5315.85	5313.67
BRG999	5333.06	5323.74	5321.67	5319.45	5318.2	5317.29	5318.78	5320.39	5321.10	5321.14	5318.20	5316,39	5314.39
BSG1119A	4648.58	4620.15	4615.97	4615.01	4611.38	4610.44	4606.79	4605.45	4601.07	4598.41	4611.38	4589.64	DRY
BSG1119B	4650.84	NM	4616.71	NM	4613.26	NM	4608.82	NM	4603.10	NM	4613.26	4590.74	4586.45
BSG1119C	4741.05	NM	4715.71	NM	4707.68	NM	4698.69	NM	4692.39	NM	4707.68	4683.22	4676.85
BSG1125A	4735.89	4712.5	4707.97	4698.72	4691.75	4686.03	4684.64	4682.27	NM	DRY	DRY	DRY	DRY
BSG1125B	4735.81	NM	4707.4	NM	4691.53	NM	4684.43	NM	NM	NM	4691.53	4665,84	4657.97
BSG1125C	4735.96	NM	4705.94	NM	4690.46	NM	4682.58	NM	NM	NM	4690.46	4662.46	4656.44
BSG1130A	4636.18	4605.08	4601.84	4601.71	4599.52	4598.31	4598.54	4596.50	4594.29	4592.42	4599.52	4585,24	4581.80
BSG1130B	4633.41	NM	4598.19	NM	4595.82	NM	4596.24	NM	4591.15	NM	4595.82	4581.50	4578.39
BSG1130C	4631.02	NM	4595.8	NM	4593.77	NM	4595.44	NM	4589.25	NM	4593.77	4579.18	4576.48
BSG1132A	4627.63	4598.96	4591.72	4595.37	4590.07	4594.65	4591.27	4592.28	4585.47	4586.02	4590.07	4575.43	4572.71
BSG1132B	4626.80	NM	4590.61	NM	4589.02	NM	4590.94	NM	4584.40	NM	4589.02	4574.17	4571.60
BSG1132C	4623.45	NM	4586.61	NM	4584.79	NM	4587.37	NM	4580.23	NM	4584.79	4569.51	4567.42
BSG1133A	4633.99	4609.55	4599.54	4600.58	4597.14	4598.63	4595.70	4595.03	4590.84	4589.35	4597.14	4581.52	DRY
BSG1133B	4634.98	NM	4600.33	NM	4597.79	4599.80	4596.24	NM	4591.03	NM	4597.79	4580.26	4576.45
BSG1133C	4623.55	NM	4586.27	NM	4584.17	NM	4585.79	NM	4579.05	NM	4584.17	4568.02	4565.65
BSG1135A	4637.84	4607,17	4604.89	4603.14	4601.74	4599.64	4600.64	4598.36	4597.38	4595.04	4601.74	NM	DRY
BSG1135B	4635.65	NM	4601.33	NM	4598.72	NM	4598.47	NM	4594.18	NM	4598.72	4585.03	4582.01
BSG1135C	4629.39	NM	4594.35	NM	4592.41	NM	4594.11	NM	4588.16	NM	4592.41	4578.05	4575.52
BSG1137A	4627.75	4599.61	4592.97	4595.84	4591.36	4593.27	4593.03	4591.90	4587.51	4587.34	4591.36	4577.97	4575.04
BSG1137B	4625.46	NM	4591.18	NM	4589.45	NM	4593.41	NM	4586.05	NM	4589.45	4576.36	4573.69
BSG1137C	4624.32	NM	4590.42	NM	4588.57	NM	4592.31	NM	4585.49	NM	4588.57	4575.59	4573.04
BSG1148A	4736.19	NM	4706,23	4697.5	4690.89	4684.62	4681.67	4679.86	4675.74	4674.40	4690.89	4663.08	4657.05
BSG1148B*	4736.09	NM	4704.74	NM	4689.67	NM	4679.91	NM	4673.94	NM	4689.67	4660.68	4655.97
BSG1148C*	4735.77	NM	4704.56	NM	4689.77	NM	4679.77	NM	4673.26	NM	4689.77	4660.21	4655.30
BSG1153A	4776.70	4767.71	4765.97	4762.25	4761.42	NM	4751.44	4748.74	4747.18	4745.13	4761.42	4739.35	4733.60
BSG1153B	4743.53	NM	4727.42	NM	4741.41	NM	4745.13	NM	4750.89	NM	4750.81	4745.30	4749.47
BSG1153C	4853.21	NM	4776.8	NM	4777.65	NM	4785.33	NM	4793.66	NM	4784.86	4784.61	4785.17
BSG1177A	4730.63	4706.71	4697.83	4689.39	4683.42	4676.04	4671.96	4669.16	4666.21	4666.21	4683.42	4654.44	4649.61
BSG1177B	4732.41	NM	4698.8	NM	4684.22	NM	4672.41	NM	4666.45	NM	4684.22	4654.41	4649.35
BSG1177C	4735.53	NM	4706.25	NM	4691.98	NM	4680.14	NM	4674.12	NM	4691.98	4661.97	4656.53
BSG1179A	4732.71	NM	4704.21	4695.72	4689.07	4682.72	4679.31	4677.18	4673.85	4672.32	4689.07	4661.40	4655.43
BSG1179B	4732.27	NM	4702.99	NM	4688.24	NM	4677.51	NM	4671.21	NM	4688.24	4657.37	4653.17
BSG1179C	4734.12	NM	4704.36	NM	4689.54	NM	4674.41	NM	4672.32	NM	4689.54	4658.59	4654.21
BSG1180A	4729.60	4706.79	4700.56	4692.07	4685.83	4678.59	4674.34	4671.68	4668.56	4668.66	4685.83	4655.45	4649.89
BSG1180B	4731.31	NM	4701.99	NM	4687.06	NM	4675.45	NM	4669.27	NM	4687.06	4656.53	4651.61
BSG1180C	4733.39	NM	4704.1	NM	4689.84	NM	4678.32	NM	4671.79	NM	4689.84	4659.31	4654.12
BSG1196A	4723.17	4706.4	4700.31	4691.96	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
BSG1196B	4723.76	NM	4700.79	NM	4686.33	4679.03	4674.76	4672.05	4668.95	4668.97	4686.33	4655.76	4651.23
BSG1196C	4726.16	NM	4702.9	NM	4688.05	NM	4676.18	NM	4670.25	DRY	4688.05	4656.74	4652.31
BSG1201	Not Drilled Yet	NM	4669.07	4675.02	4669.47	4664.09	4659.78	NM	NM	NM	NM	NM	4625.27
BSG2777A	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	4673.24	4676.64	4673.67	4662.48	4658.82
BSG2777B	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	4675.42	4676.64 NM	4673.67	4661.35	4657.57
BSG2778A	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	4786.13	4784.70	4782.05	4776.50	4770.33
BSG2778B		Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet	Not Drilled Yet		4793.73	NM	4782.05	4783.80	4777.69
00021100	Not Dilled Tet	140t Dillieu Tet	Not Dilled fet	Not Dilled Tet	Not Dilled Tet	Not Dilled fet	Not Dilled fet	Not Dilled fet	4/93./3	IVIVI	4/09.13	4/03.00	4///.09

Well	Sept 1996	April 2003	Sept 2003	April 2004	Sept 2004	April 2005	Sept 2005	April 2006	Sept 2006	April 2007	Sept 2007	Sept 2008	Sept 2009
BSG2779A	Not Drilled Yet	4620.84	4586.86	4585.67	4585.68	4579.47							
BSG2779B	Not Drilled Yet	4590.96	4592.07	4584.86	4584.85	4578.55							
BSG2779C	Not Drilled Yet	4584.86	NM	4577.13	4577.14	4571.67							
BSG2782A	Not Drilled Yet	4674.88	4672.41	4674.77	4660.84	4659.18							
BSG2782B	Not Drilled Yet	4672.28	NM	4674.67	4661.39	4652.02							
BSG2782C	Not Drilled Yet	NM	NM	4676.55	4660.85	4667.68							
BSG2783A	Not Drilled Yet	4677.72	4677.40	4675.06	4664.37	4660.19							
BSG2783B	Not Drilled Yet	4673.90	4674.90	4675.35	4664.69	4660.31							
BSG2783C	Not Drilled Yet	4678.00	4677.90	4676.51	4665.12	4661.09							
COG1149A	5240.65	NM	NM	NM	5238.72	5238.32	5238.54	5237.40	5237.09	NM	5236.68	5235.81	5235.38
COG1149B	5214.97	NM	NM	NM	5213.32	NM	5213.63	NM	5214.97	NM	5214.13	5212.92	5211.37
COG1149C	5213.69	NM	NM	NM	5212.49	NM	5212,96	NM	5213.69	NM	5212.83	5211.39	5211.77
COG1150A	5213.46	5214.63	5214,31	5213.66	5213.86	5214.12	5214.66	5215.35	5215.10	NM	5214.20	5212.89	5210.99
COG1150B	5213.20	NM	5213.54	NM	5213.11	NM	5213.81	NM	5214.33	NM	5213.42	5211.98	5210.35
COG1150C	5035.22	NM	5039.13	NM	5043.71	NM	5050.23	NM	5055.14	NM	5056.15	5056.18	5056.19
COG1151A	5221.97	NM	NM	5220.71	5220.41	5219.96	5220.25	5219.59	5219.55	5219.89	5219.90	5218.94	5218.33
COG1151B	5233.56	NM	NM	NM	5231.9	NM	5222.07	NM	5230.52	NM	5230.24	5229.18	5228.57
COG1151C	5213.08	NM	NM	NM	5213.55	NM	5213.88	NM	5214.53	NM	5213.65	5212.36	5211.01
COG1151D	5210.88	NM	NM	NM	5211.2	NM	5211.67	NM	5212.45	NM	5211.47	5209.91	5208.48
COG1152A	5178.70	NM	NM	5175.41	5175.79	5175.18	5176.65	5177.09	5177.65	5177.70	5176.97	5175.24	5176.15
COG1152B	5209.14	NM	NM	NM	5205.52	NM	5205.54	NM	5205.70	NM	5205.11	5203.59	5204.30
COG1152C	5175.61	NM	NM	NM	5174.59	NM	5175.04	NM	5175.67	NM	5175.32	5173.24	5172.28
COG1158A	5237.93	5238.7	5238.13	5237.23	5236.83	5236.64	5237.82	5235.66	5235.39	NM	5234.99	5234.08	5233.56
COG1158B	5227.30	NM	5229.97	NM	5229.67	NM	5229.72	NM	5229.41	NM	5229.18	5228.41	5227.90
COG1158C	5222.27	NM	5222.71	NM	5222.26	NM	5222.73	NM	5222.93	NM	5222.45	5221.43	5220.50
COG1175A	4844.45	4825.11	4822.43	4819.32	4817.27	4814.08	4811.48	4808.93	4806.96	4804.37	4802.15	4796.61	4789.81
COG1175B	4845.20	NM	4823.08	NM	4817.93	NM	4812.10	NM	4807.52	NM	4802.79	4797.21	4791.35
COG1175C	4846.28	NM	4823.84	NM	4818.93	NM	4812.87	NM	4808.27	NM	4803.45	4797.94	4791.33
COG1178A	4847.41	4827.54	4824.86	4821.7	4819.89	4816.40	4813.79	4811.20	4809.09	4806.23	4804.24	4798.63	4792.13
COG1178B	4847.54	NM	4824.92	4821.7 NM	4819.63	NM	4813.87	NM	4809.15	NM	4804.21	4798.64	4793.01
COG1178C	4847.67	NM	4825.06	NM	4819.76	NM	4813.98	NM	4809.27	NM	4804.21	4798.79	4793.01
COG918	5219.30	NM	NM	NM	5219.07	NM	NM	5220.58	5220.74	5220.91	5219.53	5218.08	NM
CPG950	5144.20	NNM	NM	NM	NM	5140.54	5146.55	5141.31	5142.53	5140.36	5140.46	5137.31	5135.45
ECG1112A	5242.10	NM	NM	NM	5239.4	NM	NM	5240.15	5243.07	5242.45	5241.17	5240.72	NM
ECG1112B	5255.63	NM	NM	NM	5252.61	NM	NM	NM	5255.02	NM	5253.54	5252.80	NM
ECG1113A	5174.57	5172.39	5171.84	5171.03	5170.26	5169.19	5168.48	5167.82	5167.40	5166.86	5166.51	5165.05	5163.50
ECG1113B	5141.45	NM	51/1.64	NM	5170.26	NM	5139.99	NM	5137.18	NM	5133.23	5130.22	5128.33
ECG1113C	5143.17	NM	5143.65	NM	5140.68	NM	5139.99	NM	5137.16	NM	5133.23	5130.22	5129.45
ECG1114A	5330.38	5328.5	5327.31	5325,77	5324.94	5323.81	5324.06	5323.80	5324.28	5323.79	5323.60	5321.49	5319.60
ECG1114B	4985.46	NM	4979.55	NM	4978.81	4978.29	4978.17	4977.58	4977.19	4976.41	4976.05	4974.54	4974.51
ECG1115A	4987.44	4946.96	4945.42	4937.51	4927.49	4910.61	4898.46	NM	4877.01	4867.42	4863.86	4852.33	4869.94
ECG1115A ECG1115B	4987.44	4946.96 NM	4945.42	4937.51 NM	4927.49	4910.61 NM	4898.46	NM	4877.01	4867.42 NM	4863.86	4852.33	4869.94
ECG1115B ECG1115C	4995.06	NM	4948.99	NM	4930.81	NM	4900.03	NM	4880.41	NM	4869.00	4843.38	4874.70
ECG11150 ECG1115D	5000.88	NM	4948.7	NM	4931.24	NM	4903.18	NM NM	4882.37	NM NM	4871.45	4843.38	4877.91
ECG1115D ECG1115E	4933.83	NM NM	4958.33	NM NM	4939.96	NM	4910.67	NM NM	4891.10	NM NM	4877.95	4866.90	4883.92
ECG1115E ECG1116A	4933.83	4938.31	4932.44	DRY	4931./3 DRY	DRY	4932.73 DRY	DRY	4932.60 DRY	DRY	4932.13 DRY	4931.99 DRY	4931.03 DRY
								4921.64		4920.37			
ECG1116B	4979.18	NM	4940.94	4936.01	4929.84	4924.87	4922.86		4920.76		4920.50	4921.49	4920.66
ECG1116C	5118.19	NM 40.45.08	5117.15	NM 4036.03	5114.8	NM 4000.74	5115.13	Dry	5113.15	NM 4005.80	5110.37	5105.36	5105.10
ECG1117A	4984.54	4945.98	4943.76	4936.03	4926.05	4908.71	4896.41	4883.83	4875.70	4865.80	4861.57	4851.12	4866.94
ECG1117B	4994.69	NM	4952.91	NM	4935.08	NM	4905.26	NM	4885.22	NM	4871.41	4860.22	4874.45
ECG1117C	4999.57	NM	4958.96	NM	4941.35	NM	4911.63	NM	4891.61	NM	4876.93	4866.90	4879.70
ECG1118A	4842.88	4804.76	4803.79	4798.54	4794.74	4791.94	4789.02	4786.14	4783.96	4781.60	4779.03	4771.68	4767.48

Well	Sept 1996	April 2003	Sept 2003	April 2004	Sept 2004	April 2005	Sept 2005	April 2006	Sept 2006	April 2007	Sept 2007	Sept 2008	Sept 2009
ECG1118B	4846.47	NM	4805.18	NM	4798.83	NM	4793.16	NM	4787.94	NM	4782.85	4777.48	4771.36
ECG1118C	4847.31	NM	4807.55	NM	4802.04	NM	4796.04	NM	4790.74	NM	4785.83	4780.63	4774.56
ECG1121A	4826.43	4808.36	4806.48	4803.27	4800.29	4797.57	4795.23	4792.47	4789.93	4787.75	4785.60	4779.79	4773.48
ECG1121B	4827.77	NM	4807.01	NM	4801.4	NM	4795.36	NM	4789.85	NM	4785.02	4779.53	4773.43
ECG1121C	4827.98	NM	4807.16	NM	4801.52	NM	4795.42	NM	4790.28	NM	4785.49	4779.91	4773.79
ECG1124A	4979.71	4938.69	4937.78	4929.35	4917.36	4899.38	4880.61	4872.33	DRY	NM	DRY	DRY	DRY
ECG1124B	5008.04	NM	4935.66	NM	4912.98	NM	4886.55	NM	4864.87	4855.59	4865.23	4839.16	4875.22
ECG1124C	4998.44	NM	4955.68	NM	4937.23	NM	4907.90	NM	4888.26	NM	4874.36	4864.00	4880.81
ECG1128A	4981.67	4936.06	4934.65	4926.24	4915.13	4897.55	4885.71	4873.66	4865.47	4856.44	4855.55	4839.42	4868.18
ECG1128B	4967.87	NM	4932.08	NM	4916.66	NM	4891.45	NM	4873.44	NM	4861.55	4849.46	4872.16
ECG1128C	4991.72	NM	4940.6	NM	4920.71	NM	4890.65	NM	4870.75	NM	4859.44	4843.78	4874.23
ECG1131A	4915.09	4905.21	4903.83	4900.22	4897.72	4891.28	4886.09	4880.92	4876.95	4872.00	4869.18	4864.76	4864.38
ECG1131B	4937.28	NM	4913.07	NM	4882.39	NM	4890.51	NM	4869.05	NM	4858.50	4849.69	4862.88
ECG1131C	4951.90	NM	4920.14	NM	4905.79	NM	4891.13	NM	4868.43	NM	4854.09	4843.66	4862.27
ECG1142A	4993.80	4944.45	4943.49	4933.69	4923.63	4905.85	4893.24	4880.81	4872.92	4862.64	4862.22	4845.77	4875.53
ECG1142B	4981.68	NM	4967.92	NM	4961.3	NM	4948.83	NM	4938.44	NM	4929.37	4925.65	4922.07
ECG1142C	4966.43	NM	4963,76	NM	4961.73	NM	4959.43	NM	4955.81	NM	4951.11	4947.75	4944.55
ECG1143A	5057.68	5051.49	5052.95	5053.13	5049.58	5048.24	5048.05	5047.50	5044.74	5042.91	5039.14	5032.48	5028.11
ECG1143B	5007.25	NM	5050.78	NM	5025.48	NM	5041.24	NM	5025.61	NM	5000.92	5002.79	4993.01
ECG1143C	5043.05	NM	5076.99	NM	5048.94	NM	5068.01	NM	5052.68	NM	5029.82	5038.17	5026.05
ECG1144A	4860.65	4847.78	4845.8	4843.91	4842.48	4839.77	4837.41	4834.37	4832.03	4829.46	4826.94	4820.45	4809.78
ECG1144B	4987.18	NM	4942.32	NM	4922.41	NM	4891.86	4880.38	4871.22	4860.90	4860.67	4844.98	4868.93
ECG1144C	4989.43	NM	4946.67	NM	4928.33	NM	4898.76	NM	4877.79	NM	4860.38	4852.97	4870.56
ECG1145A	4980.60	4935.64	4934.72	4925.62	4915.23	4897.70	4885.49	4872.99	4864.96	4854.42	4852.60	4837.98	4867.00
ECG1145B	4988.25	NM	4937.76	NM	4916.54	NM	4887.29	4875.23	4867.55	NM	4859.70	4839.84	4872.61
ECG1145C	4990.46	NM	4940.27	NM	4920.11	NM	4890.11	NM	4869.86	NM	4860.64	4842.36	4872.89
ECG1146	4991.52	4921.8	4921.28	4908.4	4898.52	4880.32	4867.55	4856.71	4847.39	4834.30	NM	4817.36	4870.22
ECG1182A	NM	5571,77	5571.76	5567.55	5567.23	5565.93	5567.37	5569.85	5562.27	5567.48	5567.29	5563.20	5566.59
ECG1182B	5579.53	NM	5574.82	NM	5574.33	5576.40	5576.33	5576.99	5575.98	5576.76	5574.53	5574.07	5574.49
ECG1183A	5421,43	5418.56	5417.16	5421.02	5419,11	5421.57	5420.73	5424.93	5419.32	5419.02	5417.47	5417.28	5417.54
ECG1183B	5431.62	NM	5427.85	NM	5429.15	NM	5430.39	NM	5429.69	NM	5428.02	5427.72	5427.74
ECG1184	5410.65	5414.45	5404.15	5413.79	5404.19	NM	5404.72	5427.93	5404.22	5414.97	5403.05	5404.92	5405.67
ECG1186	5329.04	5327.98	5326.78	5325.3	5324.71	5323.41	5323.28	5323.02	5323,22	5322.96	5322.84	5321.14	5319.29
ECG1187	5333.39	5331.08	5329.99	5328.45	5327.66	5326.31	5326.09	5325.85	5325.92	5325.65	5325.64	5324.01	5322.13
ECG1188	5327.49	5326.77	5319.59	5324.16	5323.53	5322.41	5322.29	5322.08	5322.24	5321.94	5321.83	5320.10	5318.32
ECG1189	5158.27	NM	5156.72	5156.37	5156.65	5156.54	5156.42	5156.41	5156.15	5156.19	5156.32	5155.12	5155.83
ECG1190	5281.33	5280.45	5279.65	5278.66	5278.19	5277.43	5277.05	5276.43	5276.33	5275.50	5275.03	5273.75	5272.44
ECG1199A	5333.02	5328.03	5326.88	5325.43	5324.73	5323.53	5323.38	5323.12	5323.32	5323.05	5322.93	5324.23	5319.40
ECG1199B	5316.58	NM	5314.24	NM	5314.19	NM	5313.86	NM	5313.47	NM	5312.89	5312.20	5312.00
ECG1199C	5332.90	NM	5326.74	NM	5324.58	NM	5323.22	NM	5323.16	NM	5322.76	5321.08	5319.26
ECG1199D	5332.92	NM	5327.06	NM	5324.62	NM	5323.25	NM	5323.21	NM	5323.09	5321.03	5319.27
ECG1199E	5332.42	NM	5326.81	NM	5324.68	NM	5323.31	NM	5323.27	NM	5322.86	5321.19	5319.63
ECG1199F	5332.66	NM	5326.97	NM	5324.84	NM	5323.47	NM	5323.43	NM	5323.01	5321.34	5319.50
ECG1199G	5332.64	NM	5326.48	NM	5324.32	NM	5323.30	NM	5323.13	NM	5322.64	5321.09	5319.27
ECG293	5261.76	5259.57	5258.21	5257.63	5256.85	5256.86	5257.08	5258.48	5258.05	5257.60	5257.17	5255.93	5255.19
ECG294	5284.46	5278.13	5276.6	5275.18	5275.64	5275.04	5278.77	5283.70	5281.09	5279.17	5277.42	5276.94	5275.46
ECG295B	5271.66	5266.79	5265.57	5264.69	5265.09	5266.13	5269.32	5278.19	5270.99	5268.62	5266.58	5264.88	5266.22
ECG296	5295.36	5292.44	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	5290.35	NM	BLOCKED
ECG297	5306.85	5302.47	5301.53	5300.62	5300.35	5301.02	5303.01	5304.42	5305.18	5304.55	5303.01	5301.29	5302.14
ECG299	5331.09	5321.82	5319.88	5317.58	5316.43	5315.42	5316.94	5317.84	5318.95	5317.65	5318.05	5314.75	5312.72
ECG900	5331.70	5322.61	5320.61	5318.38	5317.1	5316.07	5317.44	5318.47	5319.61	5318.33	5318,71	5315,42	5313.29
ECG901	5331.29	5322.43	5320.39	5318.1	5316.91	5315.88	5317.27	5318.28	5319.44	5319.54	5318.55	5315.24	5313.12

Well	Sept 1996	April 2003	Sept 2003	April 2004	Sept 2004	April 2005	Sept 2005	April 2006	Sept 2006	April 2007	Sept 2007	Sept 2008	Sept 2009
ECG902	5354.50	BLOCKED	BLOCKED	BLOCKED	5339.71	5337.67	5337.90	5338.49	5339.56	5338.76	5339.63	5336.65	5334.13
ECG903	5502.29	5472.96	5470.06	5466.37	5465.51	5463.66	5469.85	5468.89	5472.98	5470.92	5467.76	5461.84	5458.70
ECG904	5368.07	5348.2	5346.9	5349.54	5347.4	5356.20	BLOCKED	BLOCKED	BLOCKED	BLOCKED	5348.60	NM	BLOCKED
ECG905	5387.85	5374.7	5367.76	5368.35	5368.9	5376.32	5378.70	5378.43	5379.61	5375.83	5373.30	5368.28	5367.99
ECG906	5330.62	5328.82	5327.59	5325.94	5325.35	5324.28	5324.46	5324.42	5324.79	5324.40	5324.07	5321.87	5319.90
ECG907	5331.98	5328.81	5327.6	5325.97	5325.16	5323.79	5323.80	5323.79	5324.25	5323.80	5323.56	5321.28	5319.08
ECG908	5578.84	5576.98	5574.58	5577.96	NM	5579.57	5580.73	5580.81	5581.50	5579.79	5580.26	5578.98	5579.49
ECG909	5487.95	5473.78	5473.04	5475.24	5476.53	5484.97	5485.17	5485.23	5485.28	5479.74	5476.35	5473.25	5476.54
ECG915	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	BLOCKED	NM	NM
ECG916	5563.59	5564.17	5562.08	5563.58	LID DAMAGE	5562.16	5563.36	5567.24	5570.42	5566.35	5567.77	5568.23	5568.66
ECG917	5348.03	5346.82	5345.29	5342.9	5341.85	5340.46	5340.06	5340.05	5340.36	5340.06	5339.90	5337.08	5334.60
ECG922	5331,80	5328,94	5328.08	5326,12	5325.36	5324.00	5324.08	5323.93	5324.37	5323.87	5323.64	5321.45	5319.30
ECG923	5424.97	5413.84	5411.25	5408.05	5408.2	5408.15	5411.58	5410.70	5413.54	5411.63	5409.67	5405.10	5404.48
ECG924	5557.24	5555.9	5555.82	5557.69	5556.77	5557.74	5557.06	5557.88	5556.87	5557.05	5556.37	5556.35	5556.79
CG925	5521.01	5520.45	5517.19	5521.7	5518.77	5523.50	5520.78	5524.38	5520.43	5521.36	5518.32	5517.75	5518.21
ECG926	5509.85	5509.5	5507.61	5512.58	5508.5	5514.28	5509.65	5514.90	5509.23	5511.81	5508.07	5507.89	5508.72
ECG928	5425.10	5413.17	5411.1	5407.85	5408.11	5408.08	5411.57	5410.71	5413.54	5411.56	5409.55	5405.00	5404.55
ECG931	5571.38	5569.16	5568.48	5573.06	5569.62	5573.35	5570.36	5572.66	5570.02	5569.54	5568.75	5568.51	5568.71
ECG932	5635.16	5630.45	5628,68	5630.36	NM	5629.20	5631.60	5631.92	5631.58	5631.00	5630.04	5628.79	5629.44
ECG933	5577.79	5572.99	5572.15	5573.51	5571.79	5573.47	5573.03	5574.07	5572.72	5573.52	5571.71	5571.22	5571.45
ECG934	5584.37	5577.88	5576.57	5578.89	5576.52	5578.77	5578.25	5579.57	5578.07	5579.07	5576.55	5576.05	5576.34
ECG935	5708.74	NM	5707.58	5708.85	5707.84	5709.31	5708.09	5709.65	5708.02	5708.31	5707.57	5707.46	5707.70
ECG936	5845.18	5840.33	BLOCKED	BLOCKED	5841.88	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED
ECG937	5809.25	5802.93	5802	5802.1	5801.37	5802.07	5802.27	5804.42	5803.80	5803.58	5802.45	5801.12	5800.86
ECG938	5983.73	5984.42	5982.51	5983.42	5982.31	5984.25	5983.92	5985.53	5983.87	5983.84	5982.57	5982.22	5982.47
ECG939	5983.43	5984.31	5982.22	5983.29	NM	5984.20	NM	NM	NM	BLOCKED	BLOCKED	BLOCKED	BLOCKED
ECG940	6072.47	6081.07	6075.73	6080	6076.25	6087.84	6077.79	6088.91	6078.80	6079.52	6076.83	6077.59	6078.21
ECG952	5136.02	5142.54	5142.25	5142.08	5131.29	5130.98	5131.02	5131.31	5120.56	5130.18	5128.74	5125.61	5124.98
EPG1165A	4632.91	4602.68	4598.88	4599.21	4596.56	4597.25	4596.81	4594.98	4592.22	4590.72	4586.79	4589.84	4586.92
EPG1165B	4631.52	NM	4597.03	NM	4595.02	NM	4595.77	NM	4590.68	NM	4584.98	4585.85	4584.05
EPG1165C	4628.73	NM	4594.17	NM	4592.28	NM	4594.27	NM	4588.32	NM	4582.27	4585.08	4582.56
EPG1166	4574.70	4583.61	4561.65	4584.42	4563.35	4586.76	4566.13	4589.39	4568.65	4587.56	4564.24	4564.21	4566.66
EPG1689	4603.67	NM	4361.63 NM	NM	NM	4602.27	4603.27	4604.80	4605,73	4606.71	4607.55	4607.55	4607.90
EPG2780A	Not Drilled Yet	NM	NM	NM	NM	NM	NM	NM	NM	DRY	4579.28	4580.15	4580.08
EPG2780B	Not Drilled Yet	NM	NM	NM	NM	NM	NM	NM	NM	4594.06	4590.50	4589.36	4590.63
EPG2781A	Not Drilled Yet	NM	NM	NM	NM	NM	NM	NM	NM	4594.64	4604.20	4601.97	4601.40
EPG2781B	Not Drilled Yet	NM	NM	NM	NM	NM	NM	NM	NM	NM	4601.93	4602.59	4602.18
HMG1122A	4737.86	4715.53	4710.95	4702.72	4696.63	4690.98	4691.06	4685.85	4684.51	4680.37	4679.72	4673.45	4663.87
HMG1122B	4737.86	47 15.53 NM	4710.95	NM	4694.88	NM	4689.33	NM	4682.71	NM	4678.25	4671.57	4662.36
HMG1122C	4761.21	NM	4750.62	NM	4743.39	NM	4739.59	NM	4735.83	NM	4732.52	4728.63	4723.49
HMG1123A	4736.48	4713.46	4708.5	4699.77	4692.73	4687.57	4687.93	4685.62	4681.09	4677.37	4677.13	4669.78	4660.42
HMG1123B	4736.48	NM	4707.85	NM	4692.78	NM	4686.99	NM	4680.17	NM	4676.24	4668.36	4659.72
				NM	4692.76	NM	4685.33	NM	4678.59	NM	4674.73	4666.20	4658.54
HMG1123C	4736.32 4753.35	NM 4731.73	4707.08 4723.74	4722.5	4716.91	4711.02	4709.31	4706.57	4702.78	4698,91	4696.67	DRY	DRY
HMG1126A					4716.91	4711.02 4710.68	4709.31	4706.57	4702.78	4698.68	4696.49	4691.60	4683.59
HMG1126B	4752.18	NM NM	4727.17 4722.12	NM NM	4716.31	4/10.68 NM	4709.08	4/06.37 NM	4696.82	4698.68 NM	4696.49	4691.60	4683.59
HMG1126C	4748.44					DRY	4703.73 DRY	DRY	4696.82 DRY	DRY	DRY	4685.91 DRY	DRY
HMG1134A	4641.35	4612.23	4610.35	4607.47	4606.45				4594.99	4593,19	4589,95	4585,98	4582.94
HMG1134B	4636.26	NM	4602.09	NM	4599.75	4599.44	4599.09	4597.26				4585.98 4583.53	4582.94
HMG1134C	4632.13	NM 4575.00	4598.04	NM 4575.07	4596.46	NM 4574.00	4596.45	NM	4592.16	NM 4575.24	4587.03	4583.53 4586.44	4581.30
HMG1163A	4591.75	4575.29	NM	4575.27	4587.94	4574.69	4585.01	4574.99	4584.30	4575.34	4585.02		
HMG1163B	4592.10	NM	NM	NM	4588.36	NM	4585.40	NM	4585.35	NM	4585.41	4586.36	4586.31
HMG1163C	4496.49	NM	NM	NM	4491.28	NM	4489.20	NM	4488.85	NM	4489.68	4489.86	4490.00

Well	Sept 1996	April 2003	Sept 2003	April 2004	Sept 2004	April 2005	Sept 2005	April 2006	Sept 2006	April 2007	Sept 2007	Sept 2008	Sept 2009
HMG1163Z	4590.48	NM	NM	NM	4586.92	NM	NM	NM	4584.32	NM	4583.91	NM	NM
HMG1164A	NM	NM	ABANDONED	ABANDONED	ABANDONED								
HMG1856	4787.21	NM	4773.78	NM	NM	4764.81	4760.07	4760.85	4755.01	4756.67	4751.41	4749.61	4747.81
K105	5118.05	5113.93	5113.19	5113.02	5115.75	5115.28	5115.28	5115.29	5115.05	5114.90	5114.71	5114.2*	5112.64
K106	4732.30	4703.73	4702.98	4695.32	4689.26	4681.89	4677.52	4673.91	4671.26	4669.70	4667.14	4664.19	DRY
K120	5148.13	5139.32	5138.91	5138.77	5146.52	NM	5146.59	5147.08	5151.00	5150.86	5151.54	5147.59	5149.00
K201	4639.79	4609.7	NM	NM	4605.63	4603.37	4603.93	4601.93	4601.31	NM	ABANDONED	ABANDONMENT	ABANDONED
K26	4981.80	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	NM	DRY	DRY	DRY
K70	5325.43	5324.15	5322.75	5321.15	BLOCKED	5319.32	5319.41	5322.72	5319.62	5319.20	5318.93	DRY	DRY
K72	5261.26	BLOCKED	5259.69	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	DRY	NM
K84	5175.89	5174.81	5174.29	NM	5172.67	5174.02	5173.49	5175.59	5175.35	5175.26	5174.23	NM	5173.12
LRG910	5244.87	5242.07	5241.25	5241.36	5240.27	5240.72	5240.73	5243.24	5242.65	5242.76	5241.65	5240.92	5240.91
LRG911	5204.38	5201.64	5201.2	5201.3	5201.12	5201.09	5201.50	5201.52	5201.44	5201.77	5202.04	5202.30	5202.61
LRG912	5223.61	5222.68	5222.23	5221.54	5221.48	5221.79	5222.29	5222.96	5223.34	5223.12	5222.39	5221.27	5222.27
LRG914	5258.69	5256.47	5254.8	5253.56	5252.78	NM	5252.81	5253.88	5253.95	5253.64	5252.88	5251.55	BLOCKED
LTG1127A	5181.04	5172.72	5171.63	5170.32	5169.5	5168.69	5169.27	5171.21	5171.73	5171.23	5170.20	5167.28	5165.03
LTG1127B	5186.91	NM	5178.32	NM	5176.28	NM	5175.86	NM	5177.80	NM	5176.43	5173.36	5172.41
LTG1127C	5185.53	NM	5182.29	NM	5180.22	NM	5179.55	NM	5178.45	NM	5176.81	5174.96	5170.70
LTG1129A	5030.52	5029.21	5031.65	5031.71	5025.95	5025.60	5026.68	5027.15	5021.54	5020.39	5014.64	5005.61	5002.91
LTG1129B	5015.45	NM	5043.68	NM	5013	NM	5033.87	NM	5016.65	NM	4986.35	4992.40	4980.67
LTG1129C	5018.61	NM	5047.18	NM	5010.72	NM	5036.99	NM	5019.44	NM	4980.94	4993.38	4974.80
LTG1138A	4740.39	4716.82	4696.71	4685.77	DRY	DRY	4690.84	NM	DRY	NM	DRY	DRY	DRY
LTG1138B	4740.84	NM	4688.23	NM	4669.13	4664.14	4690.84	4689.03	4672.39	4668.74	4680.55	4669.47	4640.09
LTG1138C	4740.87	NM	4693.63	NM	4675.67	NM	4691.13	NM	4675.78	NM	4680.68	4670.03	4645.90
LTG1138D	4741.26	NM	4695.82	NM	4678.01	NM	4691.85	NM	4677.21	NM	4681.54	4671.00	4648.09
LTG1138E	4741.27	NM	4696.6	NM	4678.86	NM	4689.82	NM	4677.54	NM	4681.50	4670.95	4648.81
LTG1138F	4739.07	NM	4704	NM	4688.01	NM	4687.75	NM	4678.26	NM	4677.41	4666.88	4655.50
LTG1139	5003.60	5039.22	5044.55	NM	5013.53	5026.61	5032.41	5025.64	5016.03	4970.62	5007.05	5009.72	5002.31
LTG1140A	4998.66	5040.63	5044.17	5034.85	5014.97	5029.55	5033.85	5031.00	5015.32	5017.41	4988.55	4991.27	4981.94
LTG1140B	4991.52	NM	5044.43	NM	5015.37	NM	5034.18	NM	5016.25	NM	4988.52	4991.67	4981.15
LTG1140C	5018.43	NM	5046.64	NM	5016.54	NM	5035.98	NM	5018.69	NM	4985.82	4991.32	4976.32
LTG1140D	5042.00	NM	5075.6	NM	5048.01	NM	5066.54	NM	5051.14	NM	5028.56	5035.53	5024.55
LTG1141A	5033.57	5031.65	5034.23	5034.31	5028.2	NM	5029.12	5029.51	5023.50	5022.31	5016.19	DRY	DRY
LTG1141B	4976.41	NM	5043.8	NM	5015.54	NM	5033.69	NM	5016.40	NM	NM	4991.47	NM
LTG1141C	5017,77	NM	5046.19	NM	5016.24	NM	5035.54	NM	5018.31	NM	4985.99	4991.24	4985.15
LTG1147	4741.06	4716.52	NM	NM	NM	4621.30	4692.06	NM	NM	NM	NM	NM	4608.42
LTG1167A	4923.06	4903.6	4902.3	4900.64	4900.93	4898.83	4903.25	4903.35	4908.75	4904.70	4904.02	4896.70	4893.09
LTG1167B	4919.21	NM	4904.39	NM	4903.09	4901.85	4904.49	4905.89	4907.66	4903.62	4904.63	4899.67	4895.82
LTG1167C	4921.78	NM	4906.26	NM	4905.23	NM	4906.99	NM	4910.72	NM	4907.63	4902.49	4899.12
LTG1191	Not Drilled Yet	5307.78	5307.23	5308.65	5307.64	5310.35	5310.50	5310.45	5308.23	5308.56	5307.54	5306.98	5306.21
LTG929A	5213.49	5209.01	5206.81	5208.37	5211.77	5211.85	5214.36	5211.73	5212.97	5210.80	5209.84	5208.87	5209.53
LTG929B	5211.37	NM	5204.38	NM	5206.42	NM	5210.32	Dry	5209.59	DRY	5206.30	5205.18	5203.20
P190A	4632.97	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	NM	DRY	DRY	DRY
P190B	4631.72	4601.02	4597.05	4598.61	4594.67	4595.94	4594.97	4594.18	4590.35	4589.44	4584.53	4580.92	NM
P191A	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	NM	DRY	DRY	DRY
P191B	4622.68	4594.74	4586.49	4592.12	4585.05	4593.09	4587.73	4590.01	4580.56	4582.67	4573.65	4569.93	4567.91
P192A	4633.73	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	NM	DRY	DRY	DRY
P192B	4625.79	4599.62	4591.87	4596.28	4593.66	4597.41	4596.61	4596.55	4590.35	4591.78	NM	4585.10	4582.39
P193A	4636.74	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	NM	ABANDONED	ABANDONED	ABANDONED
P193B	4623.35	NM	4590.64	4595.72	4587.86	4591.91	4591.66	4591.45	4584.80	4586.69	4578.57	4575.02	4572.36
P194A	4631,47	4601.95	4598.05	4598.63	4595.98	4596.65	4596.43	4594.48	4591.85	4590.35	NM	4594.74	4591.82
P194B	4631.46	NM	4597.69	NM	4595.62	NM	4596.26	NM	4591.47	NM	NM	4594.75	4592.04

Well	Sept 1996	April 2003	Sept 2003	April 2004	Sept 2004	April 2005	Sept 2005	April 2006	Sept 2006	April 2007	Sept 2007	Sept 2008	Sept 2009
P197B	4620.56	4590.08	4580.86	4588.04	4582.52	4592.97	4585.01	Dry	4576.95	DRY	4569.53	4565.02	4564.12
208A	4972.60	4936.36	4936.53	4928.76	4923.16	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY
208B	4979.41	NM	4932.97	NM	4916	4899.09	4887.36	4875.22	4867.49	4857.40	4855.14	4842.23	4867.90
209B	4740.80	4706.1	4701.55	4693.58	4695.79	4688.09	4684.12	4680.54	4677.39	4676.89	4672.49	4666.29	4659.86
P211A	4887.50	4893.07	4892.06	4890.78	4878.16	4876.42	4875.89	4875.30	4875.72	4874.35	4873.70	4869.69	4865.54
P211B	4888.01	NM	4892.88	NM	4878.52	NM	4876.21	NM	4875.99	NM	4873.90	4869.88	4865.78
P212A	5001.22	5039.45	5043.09	5034.36	5027	5037.59	5043.53	5030.10	5026.82	5013.99	4992.63	4992.66	4988.76
P212B	5014.97	NM	5044.66	NM	5025.24	5028.99	5043.83	NM	5016.42	NM	4988.39	4990.44	4977.22
P214A	5422.97	5416.07	5419.36	5422.06	5420.88	5423.13	5422.30	5418.86	5421.14	5420.83	5419.96	5420.13	5419.93
P220	5517.09	5484.64	5481.65	5478.09	5476.72	5474.57	5477.43	5478.31	5481.06	5480.58	5478.80	5473.06	5468.85
P225	5472.70	5447.94	5444.62	5440.57	5439.12	5437.00	5439.40	5439.65	5441.53	5439.73	5439.11	5434.15	5430.83
P228	5761.83	5759.7	5758.67	5763.95	5760.91	5763.34	5761.98	5764.29	5761.76	5762.48	5759.35	5759.63	5760.68
P231	5311.38	5307.37	5306.68	5307.91	5306.9	5309.77	5309.89	5309.99	5308.71	5308.08	DRY	DRY	DRY
P239	5902.37	NM	NM	NM	NM	5906.52	5901.78	5904.63	5901.31	5900.09	5896.94	5897.30	5899.65
P240B	4591.05	NM	NM	4595.48	4592.58	4596.48	4593.73	4597.73	4594.30	4597.85	4594.17	NM	BLOCKED
P241A	4731.28	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	NM	DRY	DRY	DRY
P241B	4736.03	4708.7	4702.5	4693.95	4688.9	NM	4678.36	4675.84	4672.51	4671.95	4668.97	4660.20	4654.32
P241C	4735.56	4713.27	4710.18	4700.47	4690.73	4684.51	4682.32	4679.73	4676.05	4673.73	4671.55	4663.08	4656.57
P242	5185.46	NM	5181.76	5180.59	5181.43	5180.85	5183.07	5183.16	NM	5183.88	NM	5180.83	NM
P243	5337.88	5334.28	5333.47	5332.1	5334.88	5333.87	5333.66	5333.22	5332.99	5332.96	5332.99	5332.06	5330.83
P244A	5630.54	5627.92	5627.76	5629.64	5630.76	5631.68	5631.44	5630.91	5630.69	5629.64	5628.74	5628.88	5629.83
P244B	5617.29	NM	5623.53	NM	5628.77	NM	5629.57	NM	5625.89	NM	5623.80	5624.03	5624.99
P244C	5616.40	NM	5619.38	NM	5628.03	NM	5629.84	NM	5623.40	NM	5619.95	5620.18	5621.27
P245	5471.19	5439.59	5434.23	5439.67	5438,36	5440,46	5446.14	5450.96	5452.34	5447.86	5444.11	5437.89	5435.33
P247A	4436.84	4421.1	4425.43	4418.26	4428.19	4418.04	4425.39	4419.42	4423.55	4418.48	4423.12	4421.57	4421.42
P248A	5252.83	5255.36	5250.13	5250.06	5249.62	5250,21	5250.28	5252.86	5250.79	5250.21	5248.29	5248.99	5248.65
P248B	5254.75	NM	5251.06	NM	5251.52	NM	5252.09	NM	5252.72	NM	5250.23	5250.85	5250.51
P248C	5261.77	NM	5255.04	NM	5257.36	NM	5257.77	Dry	5258.63	DRY	5256.08	5256.42	5255.89
P249A	4852.93	4828.14	DRY	DRY	DRY	DRY	DRY	DRY	DRY	BLOCKED	DRY	DRY	DRY
P249B	4852.96	NM	4827.81	NM	NM	NM	NM	NM	NM	NM	BLOCKED	BLOCKED	BLOCKED
P252A	4428.06	NM	NM	4415.6	4421.31	4416.06	4418.42	4417.22	4419.45	4416.76	4419.04	4419.37	4417.87
P252B	4425.69	NM	NM	NM	4416.5	4413.23	4415.58	NM	4416.64	NM	4416.24	4416.01	4415.16
P252C	4428.94	NM	NM	NM	4419.26	4415.97	4418.24	NM	4419.36	NM	4419.00	4418.67	4417.98
P253A	4424.82	4412.96	4417.47	4410.79	4417.01	4410.55	4414.93	4411.47	4415.54	4411.02	4415.52	4414.47	4413.40
P253B	4415.09	NM	4415.15	NM	4414.83	NM	4413.06	NM	4413.43	NM	4413.02	4412.21	4411.35
P254A	4586.20	4576.9	4585.37	4576.52	4583.98	4575.95	4583.95	ABANDONED	ABANDONED	NM	NM	NM	NM
P254B	4590.73	NM	4590.45	NM	4590.13	NM	4590.07	ABANDONED	ABANDONED	NM	NM	NM	NM
P255A	4656.55	4627.71	4646,62	4626.26	4649.17	4625.40	4646.19	4626.00	4656.76	4630.47	4650.25	4651.81	4651.47
P255B	4654.97	NM	4642.99	NM	4644.86	NM	4642.39	NM	4651.34	NM	4646.21	4647.25	4642.60
P256	4602.82	4583.18	4597.67	4585	4596.64	4591.43	4594.92	4583.13	4595.80	4583.85	4595.21	4597.48	BLOCKED
P257	4647.26	4620.29	4623.5	4617.7	4621.61	4616.65	4622.28	4617.10	4624.54	4617.43	4626.95	4626.72	4630.00
P259	4423.48	4412.87	4413.8	4410.63	4416.26	4410.58	4414.42	4411.50	4415.31	4411.01	4415.24	4414.44	4413.73
P260	4598.96	4596.64	4599.3	4597.15	4600.07	4597.93	4601.19	4598.67	4602.08	4598.77	4601.35	4601.15	4602.44
P261	4608.15	4609.33	NM	NM	4610.5	4611.30	4612.45	4614.73	4613.40	4616.56	4613.09	4613.02	4614.22
P262	4448.58	DRY	4439.5	DRY	4439.25	DRY	DRY	DRY	DRY	NM	DRY	DRY	DRY
P263	4603.94	4594.58	4594.78	4589.41	4597.12	4588.86	4595.95	4589.38	4597.50	4590.15	4598.06	4598.56	4597.38
P264	4819.57	4802.76	4800.37	4797.23	4794.86	4791.11	4788.54	NM	4783.54	4781.00	4778.87	4773.43	4767.58
P267B	4788.73	4782.74	4779.27	4784.05	4777.3	4775.62	4769.00	4770.81	4763.84	NM	4756.88	4754.97	4753.61
P268	4907.53	4901.57	4900.08	4898.74	4898.22	4896.29	4895.02	NM	4893.46	4893.03	4897.05	DRY	DRY
P269	DRY	5038.38	5041.8	5037.08	DRY	DRY	5033.15	5032.92	DRY	DRY	DRY	DRY	DRY
P270	5388.54	5391.81	5381.31	5386.64	5380.7	5390.53	5385.23	5392.33	5383.63	5387.76	5379.32	5382.66	5385.00
1210	5500.54	0001.01	0301.31	3300,04	0300.7	5440.86	3303.23	5440.20	5439.61	5439.08	0070.02	0002.00	5438.49

Well	Sept 1996	April 2003	Sept 2003	April 2004	Sept 2004	April 2005	Sept 2005	April 2006	Sept 2006	April 2007	Sept 2007	Sept 2008	Sept 2009
P272	5540.28	5526.25	5524.86	5526.56	5526.66	5535.15	5534.89	5538.67	5534.66	5531.21	5528.83	5526.87	5527.44
P273	4918.79	NM	NM	4906.14	4904.35	4900.15	4897.87	4893.61	4901.13	4887.81	4885.79	4881.58	4880.44
P274	5083.38	5082.36	5082.18	5081.99	5079.51	5081.31	5081.18	5081.15	5080.95	5080.72	5080.65	5079.93	5079.66
P277	4735.26	4708.83	4703.81	4696.78	4691.26	4685.28	4684.75	4677.87	4675.34	4674.51	4673.06	4664.92	4659.48
P279	4980.07	4939.48	4938.39	4930.37	4919.92	4902.57	4890.47	DRY	DRY	NM	DRY	DRY	DRY
RVG1164Z	NM	ABANDONED	ABANDONED	ABANDONED	ABANDONED								
SRG945	5153.20	5151.48	NM	5150.96	NM	5149.46	5149.38	5150.41	5149.80	5149.63	5147.90	5145.18	5144.99
SRG946	5173.40	5168.76	NM	5165.58	NM	5165.61	5168.88	NM	NM	NM	NM	5166.23	5168.48
W131A	4665.02	4634.22	4630.85	4630.24	4625.66	ABANDONED	ABANDONED	ABANDONED	ABANDONED	NM	ABANDONED	ABANDONED	ABANDONED
W32	NM	NM	NM	NM	NM	5108.86	NM	NM	NM	NM	NM	5077.53	5072.51
W403	4801.32	4805.78	4806.26	4807.61	4795.88	4798.22	4785.71	4794.75	4781.42	4786.18	4775.68	4775.27	4776.77
WJG1154A	4612.49	4592.78	4584.4	4590.15	4577.53	4589.40	4585.00	4587.43	4575.07	4581.68	4568.38	4564.16	4562.72
WJG1154B	4612.58	NM	4580.21	NM	4577.56	NM	4584.30	NM	4575.15	NM	4568.45	4564.16	4562.69
WJG1154C	4613.23	NM	4584.4	NM	4577.12	NM	4584.11	NM	4575.31	NM	4568.86	4564.25	4562.83
WJG1169A	4733.58	4707.61	4704.4	4696.63	4690.9	4683.45	4678.41	4674.98	4672.16	4670.15	4667.74	4662.13	4654.47
WJG1169B	4733.66	NM	4704.5	NM	4691.03	NM	4678.74	NM	4672.30	NM	4667.72	4662.24	4654.62
WJG1169C	4733.72	NM	4704.56	NM	4691.1	NM	4678.78	NM	4672.39	NM	4667.84	4662.23	4654.71
WJG1170A	4617.61	4591.93	4580.4	4589.35	4578.68	4589.91	4584.34	4587.26	4575.28	4580.45	4568.33	4566.03	DRY
WJG1170B	4617.64	NM	4580.25	NM	4578.38	NM	4584.07	NM	4575.09	NM	4568.24	4563.92	4562.50
WJG1170C	4617.77	NM	4580.11	NM	4578.28	NM	4583.65	NM	4574.89	NM	4567.94	4563.70	4562.21
WJG1171A	4607.15	4595.93	4576.65	4592.79	4573.28	4588.92	4588.90	4590.50	4573.56	4586.02	4566.27	4562.75	4559.76
WJG1171B	4604.75	NM	4576.36	NM	4572.47	NM	4588.83	NM	4571.21	NM	4565.65	4562.63	4558.38
WJG1171C	4604.23	NM	4576.4	NM	4572.42	NM	4589.04	BLOCKED	4570.93	BLOCKED	4565.68	4562.73	4558.15
WJG1980	4609.64	4592.75	4578.34	4592.94	4570.89	4589.49	4579.83	4586.60	NM	NM	NM	NM	NM
WJG1981	4616.26	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	BLOCKED	NM	BLOCKED	NM	NM
WJG2453	4591.02	4595.23	NM	4592.38	NM	4586.73	NM	4590.45	NM	NM	NM	NM	NM

NM = Not Measured

All data density corrected.
*=corrected from 2008 Data

Kennecott Utah Copper Environmental Restoration Group

Appendix C
Tailings Monitoring Data

Table C-1 Daily Tailings Monitoring Data 2009

Date	Tailings pH at North Splitter Box (su)	Acid Water Pumping through WDPS (gpm)	Concentrator Throughput (TPH)		
01/01/09	7.7	0	5111		
01/02/09	7.4	0	4480		
01/03/09	7.8	0	4823		
01/04/09	7.7	0	5771		
01/05/09	7.7	0	5698		
01/06/09	7.2	0	6079		
01/07/09	7.7	0	4873		
01/08/09	7.8	0	5437		
01/09/09	7.8	0	6630		
01/10/09	7.8	0	6093		
01/11/09	7.8	0	5816		
01/12/09	7.8	0	6965		
01/13/09	7.5	0	7584		
01/14/09	7.9	0	5787		
01/15/09	7.9	0	5245		
01/16/09	7.9	0	6930		
01/17/09	7.2	0	7308		
01/18/09	7.6	0	7323		
01/19/09	7.6	0	4987		
01/20/09	7.7	0	7206		
01/21/09	7.7	0	5918		
01/22/09	7.7	0	6562		
01/23/09	7.6	0	6841		
01/24/09	7.6	0	5427		
01/25/09	7.6	0	2782		
01/26/09	7.6	0	4425		
01/27/09	7.4	0	4738		
01/28/09	7.5	0	4241		
01/29/09	7.6	0	4286		
01/30/09	7.4	0	8		
01/31/09	7.6	0	5846		
02/01/09	7.5	0	5514		
02/02/09	7.5	0	5508		
02/03/09	7.5	0	5872		
02/04/09	7.5	0	4530		
02/05/09	7.4	0	5937		
02/06/09	7.6	1965	6336		
02/07/09	7.6	3358	8629		
02/08/09	7.6	3291	8547		
02/09/09	7.6	3377	6776		
02/10/09	7.6	3313	6761		
02/11/09	7.6	3341	5274		
02/12/09	7.6	3287	5292		
02/13/09	7.6	2699	7012		
02/14/09	7.5	3313	6484		
02/15/09	7.5	3283	6888		

Date	Tailings pH at North Splitter Box (su)	Acid Water Pumping through WDPS (gpm)	Concentrator Throughput (TPH)		
02/16/09	7.5	3306	6950		
02/17/09	7.6	3356	6083		
02/18/09	7.6	3379	5951		
02/19/09	7.6	3325	6457		
02/20/09	7.5	3301	6602		
02/21/09	7.5	3298	7078		
02/22/09	7.5	3325	8508		
02/23/09	7.5	1513	6641		
02/24/09	7.0	2251	7582		
02/25/09	7.1	3688	5798		
02/26/09	6.9	1249	7225		
02/27/09	6.9	2849	6685		
02/28/09	6.9	4018	6556		
03/01/09	6.9	3769	6058		
03/02/09	6.9	3999	6543		
03/03/09	8.2	4069	6056		
03/04/09	8.0	4008	5587		
03/05/09	8.5	4090	6662		
03/06/09	8.2	4232	5953 7199 7207 6761 7497 6826 7542 6771 7637 7795		
03/07/09	8.4	4317			
03/08/09	8.1	4348			
03/09/09	8.2	4266			
03/10/09	Bad Data	4206			
03/11/09	8.0	4143			
03/11/09	7.9	4127			
03/13/09	8.0	4143			
03/14/09	7.9	4192			
03/15/09	8.1	4197			
03/16/09	7.8	4045	7591		
03/17/09	7.7	4225	7612		
03/18/09	7.7	4355	7367		
03/19/09	7.9	3217	7528		
03/20/09	7.7	4040	7989		
03/21/09	7.6	3853	7592		
03/22/09	7.7	4098	8219		
03/23/09	7.6	4272	7877		
03/24/09	7.5	3179	5943		
03/25/09	8.1	2240	5468		
03/26/09	7.9	2254	6027		
03/27/09	8.3	2352	7654		
03/28/09	8.3	2214	6267		
03/29/09	8.0	2928	7902		
03/30/09	8.2	2861	8398		
03/30/09	8.0	3198	6197		
04/01/09	8.0	3367	8043		
04/02/09	8.0	3409	5229		
04/02/09	8.2	3922	8553		
04/03/09	8.2	3840	7883		

Date	Tailings pH at North Splitter Box (su)	Acid Water Pumping through WDPS (gpm)	Concentrator Throughput (TPH)		
04/05/09	8.3	3741	8169		
04/06/09	8.1	3287	8780		
04/07/09	8.4	3184	6980		
04/08/09	8.0	3191	6705		
04/09/09	7.9	3345	5274		
04/10/09	8.1	3366	8696		
04/11/09	8.3	3177	6944		
04/12/09	8.3	3068	6511		
04/13/09	8.6	3255	6656		
04/14/09	8.2	3252	5301		
04/15/09	8.1	3759	6898		
04/16/09	7.9	3629	6168		
04/17/09	8.3	3345	5386		
04/18/09	8.4	3522	6297		
04/19/09	8.3	3153	7069		
04/20/09	8.3	3151	7112		
04/21/09	8.4	3756	7853		
04/22/09	7.8	3991	4043		
04/23/09	7.9	3964	7781		
04/24/09	8.0	3922	4623 8137 8325 8772 6391 6528 7322		
04/25/09	8.1	3928			
04/26/09	8.2	3767			
04/27/09	8.2	3461			
04/28/09	8.3	3483			
04/29/09	8.3	3484			
04/30/09	8.2	3742			
05/01/09	8.1	2952	5809		
05/02/09	8.3	2618	6371		
05/03/09	8.2	2578	7051		
05/04/09	8.0	2589	5983		
05/05/09	8.1	2885	7429		
05/06/09	8.0	3387	7606		
05/07/09	7.9	3387	7620		
05/08/09	7.9	3295	7369		
05/09/09	7.8	3272	7821		
05/10/09	8.0	3260	8147		
05/11/09	7.9	3005	5976		
05/12/09	8.1	3212	6098		
05/13/09	8.1	3059	6243		
05/14/09	8.0	3304	7593		
05/15/09	8.0	3308	7827		
05/16/09	7.9	3312	8119		
05/17/09	7.7	3258	7360		
05/18/09	7.9	3221	8090		
05/19/09	7.2	3187	8389		
05/20/09	Bad Data	3217	8118		
05/21/09	8.0	3214	5383		
05/22/09	7.9	3194	7556		

Date	Tailings pH at North Splitter Box (su)	Acid Water Pumping through WDPS (gpm)	Concentrator Throughput (TPH) 8453		
05/23/09	7.9	3213			
05/24/09	7.6	3215	8722		
05/25/09	7.8	3212	6624		
05/26/09	7.7	1807	6357		
05/27/09	7.7	1827	6324		
05/28/09	7.6	1699	6336		
05/29/09	7.7	3339	6332		
05/30/09	7.7	3279	7740		
05/31/09	7.7	3317	7305		
06/01/09	8.0	3367	7586		
06/02/09	7.8	3507	6439		
06/03/09	7.8	3396	7300		
06/04/09	7.8	3401	8393		
06/05/09	7.4	3403	6698		
06/06/09	7.9	3368	8353		
06/07/09	7.9	3396	7802		
06/08/09	7.5	3444	8110		
06/09/09	7.3	3455	8189		
06/10/09	7.2	3490	7640		
06/11/09	7.3	3498	6557 6267 5465 8037		
06/12/09	7.1	3403			
06/13/09	7.5	3461			
06/14/09	7.3	2467			
06/15/09	7.2	0	18		
06/16/09	9.0	0	5820 5962 4382		
06/17/09	9.2	3404			
06/18/09	7.5	3862			
06/19/09	7.7	3709	7193		
06/20/09	7.7	4052	7999		
06/21/09	7.7	4099	8069		
06/22/09	7.8	3967	6993		
06/23/09	7.7	3725	7120		
06/24/09	8.0	3433	8142		
06/25/09	7.7	3353	6520		
06/26/09	7.9	3352	6524		
06/27/09	7.9	3464	7787		
06/28/09	8.0	3370	8243		
06/29/09	7.9	3459	7577		
06/30/09	7.9	2637	8134		
07/01/09	7.9	3346	8285		
07/02/09	7.8	3796	8346		
07/03/09	8.0	3488	8071		
07/04/09	7.7	3294	6190		
07/05/09	7.8	3281	8496		
07/06/09	7.7	3283	8458		
07/07/09	7.9	3426	8026		
07/08/09	7.7	3681	7524		
07/09/09	7.6	2443	6726		

Date	Tailings pH at North Splitter Box (su)	Acid Water Pumping through WDPS (gpm)	Concentrator Throughput (TPH)		
07/10/09	7.9	2184	6722		
07/11/09	8.0	3479	7567		
07/12/09	7.9	3501	8357		
07/13/09	7.8	3309	7953		
07/14/09	7.7	3327	6730		
07/15/09	7.7	3011	6736		
07/16/09	7.7	3108	6524		
07/17/09	7.8	3066	7907		
07/18/09	7.8	3054	8126		
07/19/09	7.9	3077	6862		
07/20/09	7.7	5936	7312		
07/21/09	9.0	9000	6063		
07/22/09	9.0	8888	8203		
07/23/09	9.0	6002	7860		
07/24/09	7.8	3820	8197		
07/25/09	7.6	3895	8119		
07/26/09	7.7	3878	8346		
07/27/09	7.9	2290	7141		
07/28/09	7.8	2112	8123		
07/29/09	9.4	2354	4366		
07/30/09	7.2	3622	3401		
07/31/09	7.2	3841	4893		
08/01/09	7.6	3979	7437		
08/02/09	7.5	4037	7705		
08/03/09	7.3	2677	7155		
08/04/09	7.8	2782	6539		
08/05/09	8.0	2724	7129		
08/06/09	7.9	2628	8303		
08/07/09	8.1	2713	7784		
08/08/09	8.1	4173	8330		
08/09/09	8.2	4093	6157		
08/10/09	7.8	2437	4994		
08/11/09	8.1	2679	7546		
08/12/09	8.2	2720	7635		
08/13/09	8.2	2912	7682		
08/14/09	8.0	2620	7720		
08/15/09	7.9	3933	8384		
08/16/09	8.0	3981	6759		
08/17/09	8.5	2877	8282		
08/18/09	7.9	2649	5947		
08/19/09	8.0	2722	5807		
08/20/09	7.8	2428	6712		
08/21/09	7.9	2515	7589		
08/22/09	7.9	3880	7173		
08/23/09	7.9	3860	5667		
08/24/09	8.3	2396	7167		
08/25/09	8.8	2211	7202		
08/26/09	8.8	2529	7081		

Date	Tailings pH at North Splitter Box (su)	Acid Water Pumping through WDPS (gpm)	Concentrator Throughput (TPH)		
08/27/09	8.3	2740	8198		
08/28/09	8.3	2563	8125		
08/29/09	8.1	3938	8299		
08/30/09	8.2	3947	6918		
08/31/09	8.0	1285	7975		
09/01/09	9.5	1348	7855		
09/02/09	8.2	971	5470		
09/03/09	8.0	61	11		
09/04/09	9.7	2896	6019		
09/05/09	8.0	4191	7795		
09/06/09	8.0	4183	7949		
09/07/09	7.9	4038	8007		
09/08/09	7.7	2530	8069		
09/09/09	7.9	2563	8456		
09/10/09	7.8	2344	8312		
09/11/09	8.1	2692	8433		
09/12/09	8.1	3859	8282		
09/13/09	8.3	4104	8321		
09/14/09	8.0	2181	5729		
09/15/09	8.3	2356	5791		
09/16/09	8.2	2395	5506		
09/17/09	8.3	2362	5495		
09/18/09	8.9	3992	6767		
09/19/09	8.6	3742	8229		
09/20/09	8.4	3453	8279		
09/21/09	8.8	2011	8224		
09/22/09	8.2	2237	7912		
09/23/09	8.3	3648	8220		
09/24/09	8.1	3206	7798		
09/25/09	8.3	3467	8147		
09/26/09	8.4	3278	8221		
09/27/09	8.5	3325	8318		
09/28/09	8.2	3255	8208		
09/29/09	8.2	3254	5254		
09/30/09	8.3	3325	7199		
10/01/09	8.0	3252	8319		
10/02/09	8.0	3246	8445		
10/03/09	8.3	3314	8044		
10/04/09	8.2	3457	8247		
10/05/09	9.6	3509	7808		
10/06/09	8.6	3544	6019		
10/07/09	8.5	3636	6488		
10/08/09	8.4	3678	7785		
10/09/09	8.5	3674	8029		
10/10/09	8.4	3638	8154		
10/11/09	8.5	3499	8388		
10/12/09	8.5	3350	8096		
10/13/09	8.6	3267	7843		

Date	Tailings pH at North Splitter Box (su)	Acid Water Pumping through WDPS (gpm)	Concentrator Throughput (TPH)		
10/14/09	8.6	3123	6912		
10/15/09	8.4	3306	7901		
10/16/09	8.5	3241	7097		
10/17/09	8.6	3215	5459		
10/18/09	8.5	3289	8142		
10/19/09	9.1	2064	8251		
10/20/09	8.5	2303	8152		
10/21/09	8.7	2245	8371		
10/22/09	9.2	3796	7795		
10/23/09	8.8	3283	8178		
10/24/09	8.7	3295	7905		
10/25/09	8.6	3258	8389		
10/26/09	8.7	3592	5818		
10/27/09	8.4	2349	8082		
10/28/09	9.3	886	8167		
10/29/09	9.3	1687	6680		
10/30/09	8.3	3279	8258		
10/31/09	7.4	3036	7569		
11/01/09	8.1	2868	8253		
11/02/09	8.1	1915	8266 8380 8002 8349		
11/03/09	7.9	2002			
11/04/09	7.6	1825			
11/05/09	7.4	1985			
11/06/09	7.4	3385	8193		
11/07/09	7.5	1552	8059 7201 6072		
11/08/09	9.1	68			
11/09/09	9.2	160			
11/10/09	9.3	69	5721		
11/11/09	9.1	67	5175		
11/12/09	9.2	68	5392		
11/13/09	9.3	1872	5275		
11/14/09	7.9	3414	6740		
11/15/09	7.7	3624	6094		
11/16/09	7.8	3776	7536		
11/17/09	7.5	2512	7483		
11/18/09	7.5	2440	7404		
11/19/09	7.3	3932	7292		
11/20/09	7.8	0	4915		
11/21/09	7.7	0	6704		
11/22/09	7.9	0	5878		
11/23/09	7.8	3948	5604		
11/24/09	7.9	3939	7618		
11/25/09	7.8	3944	7958		
11/26/09	7.7	3943	6959		
11/27/09	7.9	3933	7796		
11/28/09	7.5	3927	7939		
11/29/09	7.8	3925	8320		
11/30/09	7.7	1335	5636		

Date	Tailings pH at North Splitter Box (su)	Acid Water Pumping through WDPS (gpm)	Concentrator Throughput (TPH)		
12/01/09	10.0	78	5650		
12/02/09	10.0	81	5535		
12/03/09	10.0	86	5488		
12/04/09	9.9	86	6862		
12/05/09	9.8	82	7608		
12/06/09	10.0	86	7739		
12/07/09	10.1	85	6788		
12/08/09	9.8	83	7963		
12/09/09	10.0	84	7389		
12/10/09	9.9	83	6945		
12/11/09	9.9	85	7141 6341		
12/12/09	10.0	448			
12/13/09	9.2	2661	6882		
12/14/09	8.2	3315	5621		
12/15/09	8.1	3592	5306		
12/16/09	8.2	3524	6036		
12/17/09	8.3	718	4818		
12/17/09	7.4	243	8		
12/19/09	10.2	2245	6217		
12/20/09	7.9	3718	6554		
12/21/09	8.0	3621	7197		
12/22/09	7.3	170	45		
12/23/09	7.9	79	8		
12/24/09	8.0	453	8		
12/25/09	4.9	1816	3589		
12/26/09	7.7	2394	3396		
12/27/09	9.6	3800	5168		
12/28/09	7.9	3807	5502		
12/29/09	7.7	3799	4022		
12/30/09	7.8	3646	6058		
12/31/09	7.7	3719	6597		

Site	Date	pН	TDS	mistry Monitorin	Ca-T	Mg-T	Cl	504	Al-D	Cd-D	Cu-D	Fe-D	Mn-D	Zn-D
		SU	(mg/L)	(mg/L as CaCO3)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
BCP2739	1/2/2009	8.19	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	0.046
BCP2739	1/9/2009	8.33	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	0.033
BCP2739	1/16/2009	7.79	NM	NM	NM	NM	NM	NM	<0.1	<1e-005	<0.015	<0.02	0.98	<0.02
BCP2739	1/23/2009	7.81	7760	44	894	231	2350	2930	<0.1	0.005	0.037	<0.02	1.16	0.029
BCP2739	1/30/2009	8.91	NM	NM	NM	NM	NM	NM	NM	<1e-005	0.04	NM	NM	0.021
BCP2739	2/6/2009	7.75	NM	NM	NM	NM	NM	NM	NM	<1e-005	0.085	NM	NM	0.032
BCP2739	2/13/2009	NM	NM	NM	NM	NM	NM	NM	NM	<1e-005	0.055	NM	NM	0.024
BCP2739	2/20/2009	6.75	7330	53	834	205	2230	2970	0.13	0.006	0.032	<0.02	1.11	0.021
BCP2739	2/27/2009	7.87	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	0.032
BCP2739	3/6/2009	8.31	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2739	3/13/2009	8.5	NM	NM	NM	NM	NM	NM	NM	<1e-005	0.04	NM	NM	<0.02
BCP2739	3/20/2009	7.98	7840	50	910	156	2260	2710	0.038	0.006	0.038	0.035	0.8	0.015
BCP2739	3/27/2009	7.9	NM	NM	NM	NM	NM	NM	NM	<1e-005	0.022	NM	NM	<0.02
BCP2739	4/3/2009	8.36	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	0.021
BCP2739	4/13/2009	8.1	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2739	4/16/2009	8.27	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2739	4/28/2009	6.86	7700	47	958	171	2240	2750	0.14	0.006	0.032	<0.02	0.54	0.021
BCP2739	5/13/2009	8.39	NM	NM	NM	NM	NM	NM	NM	<1e-005	0.025	NM	NMN	0.033
BCP2739	5/22/2009	5.69	7620	57	926	169	2240	2760	0.034	0.005	0.075	<0.02	0.61	0.03
BCP2739	5/29/2009	7.86	NM	NM	NM	NM	NM	NM	NM	<1e-005	0.03	NM	NM	0.023
BCP2739	6/4/2009	6.49	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
BCP2739	6/10/2009	6.47	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	0.028
BCP2739	6/18/2009	8.59	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2739	6/24/2009	5.78	7850	55	927	141	2220	2710	<0.1	0.003	<0.015	<0.02	0.25	<0.01
BCP2739	7/1/2009	8.12	NM	NM	NM	NM	NM	NM	NM	<1e-005	0.031	NM	NM	<0.02
BCP2739	8/4/2009	7.59	8040	44	1030	142	2670	2760	0.032	0.006	0.023	<0.02	0.29	0.03
BCP2739	8/25/2009	8.62	7850	35	1040	114	2520	2600	<0.1	0.005	<0.015	<0.02	0.23	0.017
BCP2739	9/22/2009	7.77	7960	38	1020	151	2550	NM	NM	0.007	NM	NM	NM	0.029
BCP2739	10/21/2009	8.71	8080	47	1020	125	2690	2600	<0.1	0.006	0.024	0.024	0.28	0.02
BCP2739	11/24/2009	8.64	7160	35	966	88	2370	NM	<0.1	0.003	<0.015	<0.02	<1e-005	<0.01
BCP2739	12/10/2009	8.48	7280	53	890	170	2290	2460	<0.1	0.009	0.063	<0.02	0.36	0.053
BCP2750	1/2/2009	9.64	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2750	1/9/2009	9.47	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2750	1/16/2009	9.42	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2750	1/23/2009	9.71	7150	25	1060	124	2210	2960	<0.1	<1e-005	<0.015	<0.02	<1e-005	<0.02
BCP2750	1/30/2009	9.9	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2750	2/6/2009	9.53	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2750	2/13/2009	NM	NM	NM	NM	NM	NM	NM	NM	<1e-005	0.019	NM	NM	<0.02
BCP2750	2/20/2009	9.77	7200	24	1000	93	2160	2490	<0.1	<1e-005	< 0.015	<0.02	<1e-005	<0.02

Site	Date	pH SU	TDS (mg/L)	Alk (mg/L as CaCO3)	Ca-T (mg/L)	Mg-T (mg/L)	CI (mg/L)	SO4 (mg/L)	Al-D (mg/L)	Cd-D (mg/L)	Cu-D (mg/L)	Fe-D (mg/L)	Mn-D (mg/L)	Zn-D (mg/L)
BCP2750	2/27/2009	10.05	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2750	3/6/2009	10.03	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2750	3/0/2009	9.79	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2750	3/20/2009	9.58	7260	14	1090	48	2130	2560	<0.1	<1e-005	<0.015	<0.02	<1e-005	<0.02
BCP2750	3/27/2009	9.82	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2750	4/3/2009	9.76	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2750	4/13/2009	9.57	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2750	4/16/2009	9.73	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2750	4/28/2009	7.86	7220	25	1050	73	2320	2640	<0.1	0.00072	<0.015	<0.02	0.00482	<0.02
BCP2750	5/13/2009	8.06	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2750	5/22/2009	8.48	7290	22	1110	76	2220	2700	<0.1	0.024	<0.015	<0.02	<1e-005	<0.02
BCP2750	5/29/2009	9.21	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2750	6/4/2009	8.51	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
BCP2750	6/10/2009	8.83	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2750	6/18/2009	9.4	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2750	6/24/2009	7.58	7400	21	1100	48	2240	2640	<0.1	<1e-005	<0.015	<0.02	<1e-005	<0.02
BCP2750	7/1/2009	9.35	NM	NM	NM	NM	NM	NM	NM	<1e-005	<0.015	NM	NM	<0.02
BCP2750	8/4/2009	NM	NM	23	1190	27	2450	2550	<0.1	<1e-005	<0.015	0.03	<1e-005	<0.02
BCP2750	8/25/2009	9.36	7540	17	1200	25	2370	2590	<0.1	<1e-005	<0.015	<0.02	<1e-005	<0.02
BCP2750	9/22/2009	9.9	7560	17	1210	44	2420	2540	NM	NM	NM	NM	NM	NM
BCP2750	10/21/2009	9.89	7590	23	1130	52	2590	2580	<0.1	<1e-005	<0.015	<0.02	<1e-005	<0.02
BCP2750	11/24/2009	9.7	6850	21	933	79	2320	NM	0.14	<1e-005	<0.015	0.5	0.035	<0.02
BCP2750	12/10/2009	9.99	7500	21	986	116	2410	2500	<0.1	<1e-005	0.017	<0.02	0.01	<0.02
BYP2535	1/23/2009	8.42	8980	93	1250	417	2110	4340	0.135	0.006	<0.015	<0.02	3.87	0.011
BYP2535	2/20/2009	8.38	8590	59	1150	349	2050	3850	0.25	0.006	<0.02	<0.02	2.46	0.014
BYP2535	3/20/2009	8.11	7590	79	1240	274	2070	3340	0.17	0.005	0.024	<0.02	1.93	0.017
BYP2535	4/28/2009	7.86	7780	86	1210	321	2150	2960	0.12	0.006	<0.02	<0.02	1.736	0.019
BYP2535	5/22/2009	7.8	7730	126	1140	386	1940	3510	0.114	0.006	<0.02	0.19	6.2	0.021
BYP2535	6/24/2009	8.42	8050	83	1170	239	2040	2910	0.17	0.004	<0.02	<0.02	1.93	<0.01
BYP2535	8/4/2009	NM	NM	31	1210	28	2590	2590	<0.02	0.005	<0.02	<0.02	0.01	0.01
BYP2535	8/25/2009	9.3	7730	16	1200	23	2460	2550	0.022	0.005	<0.02	<0.02	<0.01	0.011
BYP2535	9/22/2009	9.66	7500	17	1150	40	2470	2580	0.038	0.006	<0.02	<0.02	<0.01	0.066
BYP2535	10/21/2009	9.77	7650	25	1160	50	2650	2610	<0.02	0.005	<0.02	<0.02	< 0.01	0.011
BYP2535	11/24/2009	7.81	7480	100	1110	453	2000	3890	0.15	0.004	0.024	0.1	5.06	0.021
BYP2535	12/10/2009	10.02	7330	20	1010	126	2440	2500	<0.02	0.005	<0.02	<0.02	<0.01	<0.01
MCP2536	1/2/2009	7.67	NM	NM	NM	NM	NM	NM	<0.1	<1e-005	<0.015	<0.02	7.85	<0.02
MCP2536	1/9/2009	7.76	NM	NM	NM	NM	NM	NM	<0.1	<1e-005	<0.015	<0.02	3.61	<0.02
MCP2536	1/16/2009	6.92	NM	NM	NM	NM	NM	NM	<0.1	<1e-005	<0.015	0.021	6.38	<0.02
MCP2536	1/23/2009	7.7	8470	63	1170	395	2100	4320	<0.1	<1e-005	<0.015	<0.02	2.63	<0.02
MCP2536	1/30/2009	7.48	NM	NM	NM	NM	NM	NM	0.33	<1e-005	<0.015	<0.02	2.47	<0.02

Site	Date	pH SU	TDS (mg/L)	Alk (mg/L as CaCO3)	Ca-T (mg/L)	Mg-T	CI	504	AI-D	Cd-D	Cu-D	Fe-D	Mn-D	Zn-D
MCP2536	2/6/2009	7.74	NM	NM	NM	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MCP2536	2/13/2009	NM	NM	NM	NM	NM	NM	NM	<0.1	<1e-005	0.041	0.023	14.1	0.025
MCP2536	2/20/2009	7.59	8200	41	1070	NM	NM	NM	<0.1	<1e-005	<0.015	<0.02	1.71	<0.02
MCP2536	2/27/2009	6.9	NM	NM	NM	326	1920	3650	<0.1	<1e-005	<0.015	<0.02	1.95	<0.02
MCP2536	3/6/2009	8.39	NM	NM		NM	NM	NM	<0.1	<1e-005	<0.015	<0.02	0.44	<0.02
MCP2536	3/13/2009	8.02	NM	NM	NM	NM	NM	NM	0.15	<1e-005	<0.015	<0.02	1.06	<0.02
MCP2536	3/20/2009	9.26	7030	14	NM	NM	NM	NM	<0.1	<1e-005	<0.015	<0.02	3.04	<0.02
MCP2536	3/27/2009	8.43	NM	NM	1000	40	2030	2550	<0.1	<1e-005	<0.015	<0.02	<1e-005	<0.02
MCP2536	4/3/2009	8.32	NM	NM	NM	NM	NM	NM	<0.1	<1e-005	<0.015	<0.02	0.37	<0.02
MCP2536	4/13/2009	8.12	NM	NM	NM	NM	NM	NM	<0.1	<1e-005	< 0.015	<0.02	0.6	<0.02
MCP2536	4/16/2009	8.02	NM	NM	NM	NM	NM	NM	<0.1	<1e-005	<0.015	<0.02	<1e-005	<0.02
MCP2536	4/28/2009	8.36	7430		NM	NM	NM	NM	0.15	<1e-005	<0.015	<0.02	2.39	<0.02
MCP2536	5/13/2009	7.74	NM	43	1100	264	1880	3240	0.12	<1e-005	0.043	<0.02	0.85	<0.02
MCP2536	5/21/2009	7.95	7640	NM	NM	NM	NM	NM	0.17	<1e-005	<0.015	<0.02	3,57	<0.02
MCP2536	5/22/2009	NM	NM	55	935	286	2000	3480	NM	NM	NM	NM	NM	NM
MCP2536	5/29/2009	9.32	NM	NM	NM	NM	NM	NM	0.13	<1e-005	<0.015	0.14	2.32	<0.02
MCP2536	6/4/2009	7.64		NM	NM	NM	NM	NM	<0.1	<1e-005	<0.015	<0.02	<1e-005	<0.02
MCP2536	6/10/2009	7.45	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
MCP2536	6/18/2009		NM	NM	NM	NM	NM	NM	<0.1	<1e-005	<0.015	<0.02	1.58	<0.02
MCP2536	6/24/2009	8.22	NM	NM	NM	NM	NM	NM	0.12	<1e-005	<0.015	<0.02	0.82	<0.02
MCP2536	7/1/2009	7.71	7340	53	814	248	2000	3000	<0.1	<1e-005	<0.015	0.5	1.54	<0.02
MCP2536	8/4/2009		NM	NM	NM	NM	NM	NM	0.29	<1e-005	<0.015	<0.02	2.23	
MCP2536		NM	NM	12	1120	27	2440	2580	<0.1	<1e-005	<0.015	<0.02	8.59C	<0.02
MCP2536	8/25/2009	9.1	7600	15	1090	37	2520	2620	<0.1	<1e-005	<0.015	<0.02	<1e-005	<0.02
MCP2536	9/22/2009	8.05	7250	8	1120	62	2350	2490	<0.1	<1e-005	<0.015	<0.02	0.047	<0.02
4CP2536	10/21/2009	9.62	7700	5	1050	53	2430	2530	<0.1	<1e-005	<0.015	<0.02		<0.01
	11/24/2009	8.1	6950	56	1020	308	1960	3430	0.15	<1e-005	<0.015		<1e-005	<0.02
1CP2536	12/10/2009	9.92	7150	10	946	113	2370	2540	<0.1	<1e-005	<0.015	Trace <0.02	1.36885 <1e-005	<0.02